Prompts to Summaries: Zero-Shot Language-Guided Video Summarization
- URL: http://arxiv.org/abs/2506.10807v1
- Date: Thu, 12 Jun 2025 15:23:11 GMT
- Title: Prompts to Summaries: Zero-Shot Language-Guided Video Summarization
- Authors: Mario Barbara, Alaa Maalouf,
- Abstract summary: We introduce Prompts-to-Summaries: the first zero-shot, text-queryable video summarizer.<n>It converts off-the-shelf video-language models (VidLMs) captions into user-guided skims via large language models (LLMs) judging.<n>Our pipeline generates rich scene-level descriptions through a memory-efficient, batch-style VidLM prompting scheme.<n>On SumMe and TVSum, our data-free approach surpasses all prior data-hungry unsupervised methods.
- Score: 12.200609701777907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The explosive growth of video data intensified the need for flexible user-controllable summarization tools that can operate without domain-specific training data. Existing methods either rely on datasets, limiting generalization, or cannot incorporate user intent expressed in natural language. We introduce Prompts-to-Summaries: the first zero-shot, text-queryable video summarizer that converts off-the-shelf video-language models (VidLMs) captions into user-guided skims via large language models (LLMs) judging, without the use of training data at all, beating all unsupervised and matching supervised methods. Our pipeline (i) segments raw video footage into coherent scenes, (ii) generates rich scene-level descriptions through a memory-efficient, batch-style VidLM prompting scheme that scales to hours-long videos on a single GPU, (iii) leverages an LLM as a judge to assign scene-level importance scores under a carefully crafted prompt, and finally, (iv) propagates those scores to short segments level via two new metrics: consistency (temporal coherency) and uniqueness (novelty), yielding fine-grained frame importance. On SumMe and TVSum, our data-free approach surpasses all prior data-hungry unsupervised methods. It also performs competitively on the Query-Focused Video Summarization (QFVS) benchmark, despite using no training data and the competing methods requiring supervised frame-level importance. To spur further research, we release VidSum-Reason, a new query-driven dataset featuring long-tailed concepts and multi-step reasoning; our framework attains robust F1 scores and serves as the first challenging baseline. Overall, our results demonstrate that pretrained multimodal models, when orchestrated with principled prompting and score propagation, already provide a powerful foundation for universal, text-queryable video summarization.
Related papers
- HierSum: A Global and Local Attention Mechanism for Video Summarization [14.88934924520362]
We focus on summarizing instructional videos and propose a method for breaking down a video into meaningful segments.<n>HierSum integrates fine-grained local cues from subtitles with global contextual information provided by video-level instructions.<n>We show that HierSum consistently outperforms existing methods in key metrics such as F1-score and rank correlation.
arXiv Detail & Related papers (2025-04-25T20:30:30Z) - Video Summarization with Large Language Models [41.51242348081083]
We propose a new video summarization framework that leverages the capabilities of recent Large Language Models (LLMs)<n>Our method, dubbed LLM-based Video Summarization (LLMVS), translates video frames into a sequence of captions using a Muti-modal Large Language Model (MLLM)<n>Our experimental results demonstrate the superiority of the proposed method over existing ones in standard benchmarks.
arXiv Detail & Related papers (2025-04-15T13:56:14Z) - Time-R1: Post-Training Large Vision Language Model for Temporal Video Grounding [57.26400319795876]
Temporal Video Grounding (TVG) is a core challenge in long-form video understanding.<n>Recent Large Vision-Language Models (LVLMs) have shown early promise in tackling TVG through supervised fine-tuning.<n>We propose a novel post-training framework that enhances the generalization capabilities of LVLMs via reinforcement learning.
arXiv Detail & Related papers (2025-03-17T17:04:20Z) - UBiSS: A Unified Framework for Bimodal Semantic Summarization of Videos [52.161513027831646]
We focus on a more comprehensive video summarization task named Bimodal Semantic Summarization of Videos (BiSSV)
We propose a Unified framework UBiSS for the BiSSV task, which models the saliency information in the video and generates a TM-summary and VM-summary simultaneously.
Experiments show that our unified framework achieves better performance than multi-stage summarization pipelines.
arXiv Detail & Related papers (2024-06-24T03:55:25Z) - Language-Guided Self-Supervised Video Summarization Using Text Semantic Matching Considering the Diversity of the Video [22.60291297308379]
We investigate the feasibility in transforming the video summarization task into a Natural Language Processing (NLP) task.
Our method achieves state-of-the-art performance on the SumMe dataset in rank correlation coefficients.
arXiv Detail & Related papers (2024-05-14T18:07:04Z) - Scaling Up Video Summarization Pretraining with Large Language Models [73.74662411006426]
We introduce an automated and scalable pipeline for generating a large-scale video summarization dataset.
We analyze the limitations of existing approaches and propose a new video summarization model that effectively addresses them.
Our work also presents a new benchmark dataset that contains 1200 long videos each with high-quality summaries annotated by professionals.
arXiv Detail & Related papers (2024-04-04T11:59:06Z) - VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding [63.075626670943116]
We introduce a cutting-edge framework, VaQuitA, designed to refine the synergy between video and textual information.
At the data level, instead of sampling frames uniformly, we implement a sampling method guided by CLIP-score rankings.
At the feature level, we integrate a trainable Video Perceiver alongside a Visual-Query Transformer.
arXiv Detail & Related papers (2023-12-04T19:48:02Z) - Video Summarization Based on Video-text Modelling [0.0]
We propose a multimodal self-supervised learning framework to obtain semantic representations of videos.
We also introduce a progressive video summarization method, where the important content in a video is pinpointed progressively to generate better summaries.
An objective evaluation framework is proposed to measure the quality of video summaries based on video classification.
arXiv Detail & Related papers (2022-01-07T15:21:46Z) - CLIP-It! Language-Guided Video Summarization [96.69415453447166]
This work introduces CLIP-It, a single framework for addressing both generic and query-focused video summarization.
We propose a language-guided multimodal transformer that learns to score frames in a video based on their importance relative to one another.
Our model can be extended to the unsupervised setting by training without ground-truth supervision.
arXiv Detail & Related papers (2021-07-01T17:59:27Z) - Video Understanding as Machine Translation [53.59298393079866]
We tackle a wide variety of downstream video understanding tasks by means of a single unified framework.
We report performance gains over the state-of-the-art on several downstream tasks including video classification (EPIC-Kitchens), question answering (TVQA), captioning (TVC, YouCook2, and MSR-VTT)
arXiv Detail & Related papers (2020-06-12T14:07:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.