ReCUT: Balancing Reasoning Length and Accuracy in LLMs via Stepwise Trails and Preference Optimization
- URL: http://arxiv.org/abs/2506.10822v1
- Date: Thu, 12 Jun 2025 15:43:01 GMT
- Title: ReCUT: Balancing Reasoning Length and Accuracy in LLMs via Stepwise Trails and Preference Optimization
- Authors: Zhensheng Jin, Xinze Li, Yifan Ji, Chunyi Peng, Zhenghao Liu, Qi Shi, Yukun Yan, Shuo Wang, Furong Peng, Ge Yu,
- Abstract summary: Reasoning Compression ThroUgh Stepwise Trials (ReCUT) is a novel method aimed at balancing the accuracy and length of reasoning trajectory.<n> Experimental results across multiple math reasoning datasets and backbone models demonstrate that ReCUT significantly reduces reasoning lengths by approximately 30-50%.
- Score: 16.51303604678232
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in Chain-of-Thought (CoT) prompting have substantially improved the reasoning capabilities of Large Language Models (LLMs). However, these methods often suffer from overthinking, leading to unnecessarily lengthy or redundant reasoning traces. Existing approaches attempt to mitigate this issue through curating multiple reasoning chains for training LLMs, but their effectiveness is often constrained by the quality of the generated data and prone to overfitting. To address the challenge, we propose Reasoning Compression ThroUgh Stepwise Trials (ReCUT), a novel method aimed at balancing the accuracy and length of reasoning trajectory. Specifically, ReCUT employs a stepwise exploration mechanism and a long-short switched sampling strategy, enabling LLMs to incrementally generate diverse reasoning paths. These paths are evaluated and used to construct preference pairs to train two specialized models (Gemini LLMs)-one optimized for reasoning accuracy, the other for shorter reasoning. A final integrated model is obtained by interpolating the parameters of these two models. Experimental results across multiple math reasoning datasets and backbone models demonstrate that ReCUT significantly reduces reasoning lengths by approximately 30-50%, while maintaining or improving reasoning accuracy compared to various baselines. All codes and data will be released via https://github.com/NEUIR/ReCUT.
Related papers
- TL;DR: Too Long, Do Re-weighting for Efficient LLM Reasoning Compression [75.81611837629764]
We propose a dynamic ratio-based training pipeline that does not rely on sophisticated data annotations.<n>We validate our approach across models on DeepSeek-R1-Distill-7B and DeepSeek-R1-Distill-14B and on a diverse set of benchmarks with varying difficulty levels.
arXiv Detail & Related papers (2025-06-03T09:23:41Z) - AutoL2S: Auto Long-Short Reasoning for Efficient Large Language Models [56.063571989395946]
The reasoning-capable large language models (LLMs) demonstrate strong performance on complex reasoning tasks.<n>Recent approaches attempt to address this challenge by manually deciding when to apply long or short reasoning.<n>We propose Auto Long-Short Reasoning (AutoL2S), a dynamic and model-agnostic framework that enables LLMs to dynamically compress their generated reasoning path.
arXiv Detail & Related papers (2025-05-28T17:59:53Z) - Fractured Chain-of-Thought Reasoning [61.647243580650446]
We introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling.<n>We show that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget.
arXiv Detail & Related papers (2025-05-19T11:30:41Z) - ShorterBetter: Guiding Reasoning Models to Find Optimal Inference Length for Efficient Reasoning [1.0416697066889342]
We propose a simple yet effective reinforcement learning method that enables reasoning models to learn their own optimal CoT lengths without manual supervision.<n>ShorterBetter achieves 50%-80% reduction in output lengths in both in-domain and out-of-domain reasoning tasks.<n>Our reasoning trace analysis shows that ShorterBetter refines the structure of the reasoning traces by reducing unnecessary repetition, excessive self-verification, and over-exploration of alternatives.
arXiv Detail & Related papers (2025-04-30T07:04:19Z) - Towards Thinking-Optimal Scaling of Test-Time Compute for LLM Reasoning [113.49074603075032]
Recent studies have shown that making a model spend more time thinking through longer Chain of Thoughts (CoTs) enables it to gain significant improvements in complex reasoning tasks.<n>We explore whether scaling with longer CoTs can indeed impair the reasoning performance of Large Language Models (LLMs) in certain domains.
arXiv Detail & Related papers (2025-02-25T10:48:05Z) - O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning [98.3430004984531]
We propose Length-Harmonizing Fine-Tuning (O1-Pruner) to minimize reasoning overhead while maintaining accuracy.<n>Our code is coming soon at https://github.com/StarDewXXX/O1-Pruner.
arXiv Detail & Related papers (2025-01-22T01:35:11Z) - Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding [74.31981011985681]
Large language models (LLMs) have shown impressive capabilities, but still struggle with complex reasoning tasks requiring multiple steps.
We introduce LaTent Reasoning Optimization (LaTRO), a principled framework that formulates reasoning as sampling from a latent distribution.
We validate LaTRO through experiments on GSM8K and ARC-Challenge datasets using multiple model architectures.
arXiv Detail & Related papers (2024-11-06T22:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.