Post-Training Quantization for Video Matting
- URL: http://arxiv.org/abs/2506.10840v1
- Date: Thu, 12 Jun 2025 15:57:14 GMT
- Title: Post-Training Quantization for Video Matting
- Authors: Tianrui Zhu, Houyuan Chen, Ruihao Gong, Michele Magno, Haotong Qin, Kai Zhang,
- Abstract summary: Video matting is crucial for applications such as film production and virtual reality.<n>Post-Training Quantization (PTQ) is still in its nascent stages for video matting.<n>This paper proposes a novel and general PTQ framework specifically designed for video matting models.
- Score: 20.558324038808664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video matting is crucial for applications such as film production and virtual reality, yet deploying its computationally intensive models on resource-constrained devices presents challenges. Quantization is a key technique for model compression and acceleration. As an efficient approach, Post-Training Quantization (PTQ) is still in its nascent stages for video matting, facing significant hurdles in maintaining accuracy and temporal coherence. To address these challenges, this paper proposes a novel and general PTQ framework specifically designed for video matting models, marking, to the best of our knowledge, the first systematic attempt in this domain. Our contributions include: (1) A two-stage PTQ strategy that combines block-reconstruction-based optimization for fast, stable initial quantization and local dependency capture, followed by a global calibration of quantization parameters to minimize accuracy loss. (2) A Statistically-Driven Global Affine Calibration (GAC) method that enables the network to compensate for cumulative statistical distortions arising from factors such as neglected BN layer effects, even reducing the error of existing PTQ methods on video matting tasks up to 20%. (3) An Optical Flow Assistance (OFA) component that leverages temporal and semantic priors from frames to guide the PTQ process, enhancing the model's ability to distinguish moving foregrounds in complex scenes and ultimately achieving near full-precision performance even under ultra-low-bit quantization. Comprehensive quantitative and visual results show that our PTQ4VM achieves the state-of-the-art accuracy performance across different bit-widths compared to the existing quantization methods. We highlight that the 4-bit PTQ4VM even achieves performance close to the full-precision counterpart while enjoying 8x FLOP savings.
Related papers
- QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution [53.13952833016505]
We propose a low-bit quantization model for real-world video super-resolution (VSR)<n>We use a calibration dataset to measure both spatial and temporal complexity for each layer.<n>We refine the FP and low-bit branches to achieve simultaneous optimization.
arXiv Detail & Related papers (2025-08-06T14:35:59Z) - MPQ-DMv2: Flexible Residual Mixed Precision Quantization for Low-Bit Diffusion Models with Temporal Distillation [74.34220141721231]
We present MPQ-DMv2, an improved textbfMixed textbfPrecision textbfQuantization framework for extremely low-bit textbfDiffusion textbfModels.
arXiv Detail & Related papers (2025-07-06T08:16:50Z) - GPLQ: A General, Practical, and Lightning QAT Method for Vision Transformers [11.452135395287119]
Vision Transformers (ViTs) are essential in computer vision but are computationally intensive, too.<n>Model quantization aims to alleviate this difficulty, yet existing Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT) methods exhibit significant limitations.<n>This paper introduces General, Practical, and Quantization (GPLQ), a novel framework for efficient ViT quantization.
arXiv Detail & Related papers (2025-06-13T13:45:17Z) - FIMA-Q: Post-Training Quantization for Vision Transformers by Fisher Information Matrix Approximation [55.12070409045766]
Post-training quantization (PTQ) has stood out as a cost-effective and promising model compression paradigm in recent years.<n>Current PTQ methods for Vision Transformers (ViTs) still suffer from significant accuracy degradation, especially under low-bit quantization.
arXiv Detail & Related papers (2025-06-13T07:57:38Z) - APHQ-ViT: Post-Training Quantization with Average Perturbation Hessian Based Reconstruction for Vision Transformers [71.2294205496784]
We propose textbfAPHQ-ViT, a novel PTQ approach based on importance estimation with Average Perturbation Hessian (APH)<n>We show that APHQ-ViT using linear quantizers outperforms existing PTQ methods by substantial margins in 3-bit and 4-bit across different vision tasks.
arXiv Detail & Related papers (2025-04-03T11:48:56Z) - PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution [95.98801201266099]
Diffusion-based image super-resolution (SR) models have shown superior performance at the cost of multiple denoising steps.<n>We propose a novel post-training quantization approach with adaptive scale in one-step diffusion (OSD) image SR, PassionSR.<n>Our PassionSR achieves significant advantages over recent leading low-bit quantization methods for image SR.
arXiv Detail & Related papers (2024-11-26T04:49:42Z) - P4Q: Learning to Prompt for Quantization in Visual-language Models [38.87018242616165]
We propose a method that balances fine-tuning and quantization named Prompt for Quantization'' (P4Q)
Our method can effectively reduce the gap between image features and text features caused by low-bit quantization.
Our 8-bit P4Q can theoretically compress the CLIP-ViT/B-32 by 4 $times$ while achieving 66.94% Top-1 accuracy.
arXiv Detail & Related papers (2024-09-26T08:31:27Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
Post-training quantization (PTQ) and quantization-aware training (QAT) are two main approaches to compress and accelerate diffusion models.
We introduce a data-free and parameter-efficient fine-tuning framework for low-bit diffusion models, dubbed EfficientDM, to achieve QAT-level performance with PTQ-like efficiency.
Our method significantly outperforms previous PTQ-based diffusion models while maintaining similar time and data efficiency.
arXiv Detail & Related papers (2023-10-05T02:51:53Z) - Norm Tweaking: High-performance Low-bit Quantization of Large Language
Models [21.855106896725598]
We introduce a technique called norm tweaking, which can be used as a plugin in current PTQ methods to achieve high precision.
Our method demonstrates significant improvements in both weight-only quantization and joint quantization of weights and activations.
Our simple and effective approach makes it more practical for real-world applications.
arXiv Detail & Related papers (2023-09-06T06:51:15Z) - Towards Accurate Post-Training Quantization for Vision Transformer [48.779346466374406]
Existing post-training quantization methods still cause severe performance drops.
APQ-ViT surpasses the existing post-training quantization methods by convincing margins.
arXiv Detail & Related papers (2023-03-25T03:05:26Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
We propose a Fully Quantized image Super-Resolution framework (FQSR) to jointly optimize efficiency and accuracy.
We apply our quantization scheme on multiple mainstream super-resolution architectures, including SRResNet, SRGAN and EDSR.
Our FQSR using low bits quantization can achieve on par performance compared with the full-precision counterparts on five benchmark datasets.
arXiv Detail & Related papers (2020-11-29T03:53:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.