Domain2Vec: Vectorizing Datasets to Find the Optimal Data Mixture without Training
- URL: http://arxiv.org/abs/2506.10952v1
- Date: Thu, 12 Jun 2025 17:53:51 GMT
- Title: Domain2Vec: Vectorizing Datasets to Find the Optimal Data Mixture without Training
- Authors: Mozhi Zhang, Howe Tissue, Lu Wang, Xipeng Qiu,
- Abstract summary: textscDomain2Vec decomposes any dataset into a linear combination of several emphmeta-domains<n>textscDomain2Vec helps find the data mixture that enhances downstream task performance with minimal computational overhead.
- Score: 53.07879717463279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce~\textsc{Domain2Vec}, a novel approach that decomposes any dataset into a linear combination of several \emph{meta-domains}, a new concept designed to capture the key underlying features of datasets. \textsc{Domain2Vec} maintains a vocabulary of meta-domains and uses a classifier to decompose any given dataset into a domain vector that corresponds to a distribution over this vocabulary. These domain vectors enable the identification of the optimal data mixture for language model (LM) pretraining in a training-free manner under the \emph{\textbf{D}istribution \textbf{A}lignment \textbf{A}ssumption} (DA$^{2}$), which suggests that when the data distributions of the training set and the validation set are better aligned, a lower validation loss is achieved. Moreover, \textsc{Domain2vec} can be seamlessly integrated into previous works to model the relationship between domain vectors and LM performance, greatly enhancing the efficiency and scalability of previous methods. Extensive experiments demonstrate that \textsc{Domain2Vec} helps find the data mixture that enhances downstream task performance with minimal computational overhead. Specifically, \textsc{Domain2Vec} achieves the same validation loss on Pile-CC using only $51.5\%$ of the computation required when training on the original mixture of The Pile dataset. Under equivalent compute budget, \textsc{Domain2Vec} improves downstream performance by an average of $2.83\%$.
Related papers
- R&B: Domain Regrouping and Data Mixture Balancing for Efficient Foundation Model Training [11.213419356901005]
We introduce R&B, a framework that re- Partitions training data based on semantic similarity to create finer-grained domains.<n>Unlike prior works, R&B removes the need for additional compute to obtain evaluation information such as losses or gradients.<n>We demonstrate the effectiveness of R&B on five diverse datasets ranging from natural language to reasoning and multimodal tasks.
arXiv Detail & Related papers (2025-05-01T07:08:19Z) - CLIMB: CLustering-based Iterative Data Mixture Bootstrapping for Language Model Pre-training [63.07024608399447]
We propose an automated framework that discovers, evaluates, and refines data mixtures in a pre-training setting.<n>We introduce ClimbLab, a filtered 1.2-trillion-token corpus with 20 clusters as a research playground, and ClimbMix, a compact yet powerful 400-billion-token dataset.
arXiv Detail & Related papers (2025-04-17T17:58:13Z) - DUPRE: Data Utility Prediction for Efficient Data Valuation [49.60564885180563]
Cooperative game theory-based data valuation, such as Data Shapley, requires evaluating the data utility and retraining the ML model for multiple data subsets.<n>Our framework, textttDUPRE, takes an alternative yet complementary approach that reduces the cost per subset evaluation by predicting data utilities instead of evaluating them by model retraining.<n>Specifically, given the evaluated data utilities of some data subsets, textttDUPRE fits a emphGaussian process (GP) regression model to predict the utility of every other data subset.
arXiv Detail & Related papers (2025-02-22T08:53:39Z) - Dataset Distillation as Pushforward Optimal Quantization [1.039189397779466]
We propose a simple extension of the state-of-the-art data distillation method D4M, achieving better performance on the ImageNet-1K dataset with trivial additional computation.<n>We demonstrate that when equipped with an encoder-decoder structure, the empirically successful disentangled methods can be reformulated as an optimal quantization problem.<n>In particular, we link existing disentangled dataset distillation methods to the classical optimal quantization and Wasserstein barycenter problems, demonstrating consistency of distilled datasets for diffusion-based generative priors.
arXiv Detail & Related papers (2025-01-13T20:41:52Z) - Dataset Condensation with Latent Quantile Matching [5.466962214217334]
Current distribution matching (DM) based DC methods learn a synthesized dataset by matching the mean of the latent embeddings between the synthetic and the real outliers.
We propose Latent Quantile Matching (LQM) which matches the quantiles of the latent embeddings to minimize the goodness of fit test statistic between two distributions.
arXiv Detail & Related papers (2024-06-14T09:20:44Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Provable Benefit of Mixup for Finding Optimal Decision Boundaries [18.668531108219415]
We investigate how pair-wise data augmentation techniques like Mixup affect the sample complexity of finding optimal decision boundaries.
We show that Mixup mitigates this problem by significantly reducing the sample complexity.
arXiv Detail & Related papers (2023-06-01T00:59:19Z) - Bridging the Domain Gaps in Context Representations for k-Nearest
Neighbor Neural Machine Translation [57.49095610777317]
$k$-Nearest neighbor machine translation ($k$NN-MT) has attracted increasing attention due to its ability to non-parametrically adapt to new translation domains.
We propose a novel approach to boost the datastore retrieval of $k$NN-MT by reconstructing the original datastore.
Our method can effectively boost the datastore retrieval and translation quality of $k$NN-MT.
arXiv Detail & Related papers (2023-05-26T03:04:42Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
Current methods rely on external data for training an auxiliary task or apply an expensive coarse-to-fine estimation.
We develop a new adversarial learning based method, which is simple and efficient to apply.
We evaluate our approach on five real-world crowd counting benchmarks, where we outperform existing approaches by a large margin.
arXiv Detail & Related papers (2022-05-12T02:23:25Z) - How to distribute data across tasks for meta-learning? [59.608652082495624]
We show that the optimal number of data points per task depends on the budget, but it converges to a unique constant value for large budgets.
Our results suggest a simple and efficient procedure for data collection.
arXiv Detail & Related papers (2021-03-15T15:38:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.