論文の概要: You Only Train Once: A Flexible Training Framework for Code Vulnerability Detection Driven by Vul-Vector
- arxiv url: http://arxiv.org/abs/2506.10988v1
- Date: Wed, 12 Mar 2025 08:22:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-22 23:32:14.439928
- Title: You Only Train Once: A Flexible Training Framework for Code Vulnerability Detection Driven by Vul-Vector
- Title(参考訳): 一度だけトレーニングする: Vul-Vectorによるコードの脆弱性検出のための柔軟なトレーニングフレームワーク
- Authors: Bowen Tian, Zhengyang Xu, Mingqiang Wu, Songning Lai, Yutai Yue,
- Abstract要約: underlinetextbfYOTO--underlinetextbfYou underlinetextbfOnly underlinetextbfTrain underlinetextbfOnceフレームワーク。
本稿では, underlinetextbfYOTO-underlinetextbfYou underlinetextbfOnly underlinetextbfTrain underlinetextbfOnceフレームワークを紹介する。
- 参考スコア(独自算出の注目度): 3.5535006743623323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the pervasive integration of computer applications across industries, the presence of vulnerabilities within code bases poses significant risks. The diversity of software ecosystems coupled with the intricate nature of modern software engineering has led to a shift from manual code vulnerability identification towards the adoption of automated tools. Among these, deep learning-based approaches have risen to prominence due to their superior accuracy; however, these methodologies encounter several obstacles. Primarily, they necessitate extensive labeled datasets and prolonged training periods, and given the rapid emergence of new vulnerabilities, the frequent retraining of models becomes a resource-intensive endeavor, thereby limiting their applicability in cutting-edge scenarios. To mitigate these challenges, this paper introduces the \underline{\textbf{YOTO}}--\underline{\textbf{Y}}ou \underline{\textbf{O}}nly \underline{\textbf{T}}rain \underline{\textbf{O}}nce framework. This innovative approach facilitates the integration of multiple types of vulnerability detection models via parameter fusion, eliminating the need for joint training. Consequently, YOTO enables swift adaptation to newly discovered vulnerabilities, significantly reducing both the time and computational resources required for model updates.
- Abstract(参考訳): 産業全体にわたるコンピュータアプリケーションの広範な統合により、コードベース内の脆弱性の存在は重大なリスクをもたらす。
ソフトウェアエコシステムの多様性と、現代のソフトウェアエンジニアリングの複雑な性質が組み合わさって、手動のコード脆弱性の識別から自動化ツールの採用へと変化した。
これらのうち、深層学習に基づくアプローチは、精度が優れており、注目されているが、これらの手法はいくつかの障害に直面している。
主に、ラベル付きデータセットと長期間のトレーニング期間を必要とし、新たな脆弱性が急速に出現すると、モデルの頻繁な再トレーニングはリソース集約的な取り組みとなり、最先端のシナリオにおける適用性を制限します。
これらの課題を軽減するために、本稿では、Shaunderline{\textbf{YOTO}}--\underline{\textbf{Y}}ou \underline{\textbf{O}}nly \underline{\textbf{T}}rain \underline{\textbf{O}}nceフレームワークを紹介する。
この革新的なアプローチは、パラメータ融合による複数のタイプの脆弱性検出モデルの統合を促進し、共同トレーニングの必要性を排除している。
その結果、YOTOは新たに発見された脆弱性への迅速な適応を可能にし、モデル更新に必要な時間と計算リソースの両方を大幅に削減する。
関連論文リスト
- Advancing Vulnerability Classification with BERT: A Multi-Objective Learning Model [0.0]
本稿では,BERT(Bi Representations from Transformers)モデルを用いて複数ラベル分類を行う新しい脆弱性レポートを提案する。
システムはREST APIとStreamlit UIを介してデプロイされ、リアルタイムの脆弱性分析を可能にする。
論文 参考訳(メタデータ) (2025-03-26T06:04:45Z) - Enhancing Software Vulnerability Detection Using Code Property Graphs and Convolutional Neural Networks [0.0]
本稿では,コードプロパティグラフと機械学習を組み合わせたソフトウェア脆弱性検出手法を提案する。
グラフデータに適応した畳み込みニューラルネットワークなど、さまざまなニューラルネットワークモデルを導入して、これらの表現を処理する。
コントリビューションには、ソフトウェアコードをコードプロパティグラフに変換する方法論、グラフデータのための畳み込みニューラルネットワークモデルの実装、トレーニングと評価のための包括的なデータセットの作成が含まれている。
論文 参考訳(メタデータ) (2025-03-23T19:12:07Z) - DFEPT: Data Flow Embedding for Enhancing Pre-Trained Model Based Vulnerability Detection [7.802093464108404]
本稿では,脆弱性検出タスクにおける事前学習モデルの性能向上を目的としたデータフロー埋め込み手法を提案する。
具体的には,関数レベルのソースコードからデータフローグラフを解析し,DFGのノード特性として変数のデータ型を使用する。
我々の研究は、DFEPTが事前訓練されたモデルに効果的な脆弱性セマンティック情報を提供し、Devignデータセットで64.97%、Revealデータセットで47.9%のF1スコアを達成できることを示している。
論文 参考訳(メタデータ) (2024-10-24T07:05:07Z) - Enhancing Pre-Trained Language Models for Vulnerability Detection via Semantic-Preserving Data Augmentation [4.374800396968465]
本稿では,脆弱性検出のための事前学習言語モデルの性能向上を目的としたデータ拡張手法を提案する。
一連の代表的なコード事前訓練モデルの微調整に当社のデータセットを組み込むことで、最大10.1%の精度向上と23.6%のF1増加を達成することができる。
論文 参考訳(メタデータ) (2024-09-30T21:44:05Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
オフライン学習を必要とせず、簡単な効果的なオンライン学習手法を提案する。
これは、モデルが以前見たオブジェクトに関する知識を記憶するための、内蔵されたメモリ保持メカニズムを可能にする。
我々は、RT-MDNetにおける多層パーセプトロンと、DiMPにおける畳み込みニューラルネットワークの追跡のためのオンライン学習ファミリーにおける2つのネットワークに基づくアプローチを評価する。
論文 参考訳(メタデータ) (2021-12-28T06:51:18Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。