Evaluating Small-Scale Code Models for Code Clone Detection
- URL: http://arxiv.org/abs/2506.10995v1
- Date: Thu, 10 Apr 2025 07:26:20 GMT
- Title: Evaluating Small-Scale Code Models for Code Clone Detection
- Authors: Jorge Martinez-Gil,
- Abstract summary: This research aims to measure the performance of several newly introduced small code models in classifying code pairs as clones or non-clones.<n>Most models performed well across standard metrics, including accuracy, precision, recall, and F1-score.<n>A marginal fraction of clones remains challenging to detect, especially when the code looks similar but performs different operations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting code clones is relevant to software maintenance and code refactoring. This challenge still presents unresolved cases, mainly when structural similarity does not reflect functional equivalence, though recent code models show promise. Therefore, this research aims to systematically measure the performance of several newly introduced small code models in classifying code pairs as clones or non-clones. The evaluation is based on five datasets: BigCloneBench, CodeJam, Karnalim, POJ104, and PoolC, as well as six code models: CodeBERT, GraphCodeBERT, Salesforce T5, UniXCoder, PLBART, and Polycoder. Most models performed well across standard metrics, including accuracy, precision, recall, and F1-score. However, a marginal fraction of clones remains challenging to detect, especially when the code looks similar but performs different operations. The source code that illustrates our approach is available at: https://github.com/jorge-martinez-gil/small-code-models
Related papers
- Assessing the Code Clone Detection Capability of Large Language Models [0.0]
The evaluation involves testing the models on a variety of code pairs of different clone types and levels of similarity.
Findings indicate that GPT-4 consistently surpasses GPT-3.5 across all clone types.
arXiv Detail & Related papers (2024-07-02T16:20:44Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - Advanced Detection of Source Code Clones via an Ensemble of Unsupervised Similarity Measures [0.0]
This research introduces a novel ensemble learning approach for code similarity assessment.
The key idea is that the strengths of a diverse set of similarity measures can complement each other and mitigate individual weaknesses.
arXiv Detail & Related papers (2024-05-03T13:42:49Z) - Does Your Neural Code Completion Model Use My Code? A Membership Inference Approach [66.51005288743153]
We investigate the legal and ethical issues of current neural code completion models.
We tailor a membership inference approach (termed CodeMI) that was originally crafted for classification tasks.
We evaluate the effectiveness of this adapted approach across a diverse array of neural code completion models.
arXiv Detail & Related papers (2024-04-22T15:54:53Z) - StarCoder 2 and The Stack v2: The Next Generation [105.93298676368798]
We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens.
We thoroughly evaluate them on a comprehensive set of Code LLM benchmarks.
Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size.
arXiv Detail & Related papers (2024-02-29T13:53:35Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
This paper studies file-level code summarization, which can assist programmers in understanding and maintaining large source code projects.
We propose SparseCoder, an identifier-aware sparse transformer for effectively handling long code sequences.
arXiv Detail & Related papers (2024-01-26T09:23:27Z) - CONCORD: Clone-aware Contrastive Learning for Source Code [64.51161487524436]
Self-supervised pre-training has gained traction for learning generic code representations valuable for many downstream SE tasks.
We argue that it is also essential to factor in how developers code day-to-day for general-purpose representation learning.
In particular, we propose CONCORD, a self-supervised, contrastive learning strategy to place benign clones closer in the representation space while moving deviants further apart.
arXiv Detail & Related papers (2023-06-05T20:39:08Z) - Generalizability of Code Clone Detection on CodeBERT [0.0]
Transformer networks such as CodeBERT already achieve outstanding results for code clone detection in benchmark datasets.
We show that the generalizability of CodeBERT decreases by evaluating two different subsets of Java code clones from BigCloneBench.
arXiv Detail & Related papers (2022-08-26T11:24:20Z) - Evaluation of Contrastive Learning with Various Code Representations for
Code Clone Detection [3.699097874146491]
We evaluate contrastive learning for detecting semantic clones of code snippets.
We use CodeTransformator to create a dataset that mimics plagiarised code based on competitive programming solutions.
The results of our evaluation show that proposed models perform diversely in each task, however the performance of the graph-based models is generally above the others.
arXiv Detail & Related papers (2022-06-17T12:25:44Z) - Contrastive Learning for Source Code with Structural and Functional
Properties [66.10710134948478]
We present BOOST, a novel self-supervised model to focus pre-training based on the characteristics of source code.
We employ automated, structure-guided code transformation algorithms that generate functionally equivalent code that looks drastically different from the original one.
We train our model in a way that brings the functionally equivalent code closer and distinct code further through a contrastive learning objective.
arXiv Detail & Related papers (2021-10-08T02:56:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.