Extracting Knowledge Graphs from User Stories using LangChain
- URL: http://arxiv.org/abs/2506.11020v1
- Date: Wed, 14 May 2025 18:25:58 GMT
- Title: Extracting Knowledge Graphs from User Stories using LangChain
- Authors: Thayná Camargo da Silva,
- Abstract summary: This thesis introduces a novel methodology for the automated generation of knowledge graphs from user stories by leveraging the advanced capabilities of Large Language Models.<n>The User Story Graph Transformer module was developed to extract nodes and relationships from user stories using an LLM to construct accurate knowledge graphs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This thesis introduces a novel methodology for the automated generation of knowledge graphs from user stories by leveraging the advanced capabilities of Large Language Models. Utilizing the LangChain framework as a basis, the User Story Graph Transformer module was developed to extract nodes and relationships from user stories using an LLM to construct accurate knowledge graphs.This innovative technique was implemented in a script to fully automate the knowledge graph extraction process. Additionally, the evaluation was automated through a dedicated evaluation script, utilizing an annotated dataset for assessment. By enhancing the visualization and understanding of user requirements and domain concepts, this method fosters better alignment between software functionalities and user expectations, ultimately contributing to more effective and user-centric software development processes.
Related papers
- Personalized Graph-Based Retrieval for Large Language Models [51.7278897841697]
We propose a framework that leverages user-centric knowledge graphs to enrich personalization.<n>By directly integrating structured user knowledge into the retrieval process and augmenting prompts with user-relevant context, PGraph enhances contextual understanding and output quality.<n>We also introduce the Personalized Graph-based Benchmark for Text Generation, designed to evaluate personalized text generation tasks in real-world settings where user history is sparse or unavailable.
arXiv Detail & Related papers (2025-01-04T01:46:49Z) - MDSF: Context-Aware Multi-Dimensional Data Storytelling Framework based on Large language Model [1.33134751838052]
This paper introduces the Multidimensional Data Storytelling Framework (MDSF) based on large language models for automated insight generation and context-aware storytelling.<n>The framework incorporates advanced preprocessing techniques, augmented analysis algorithms, and a unique scoring mechanism to identify and prioritize actionable insights.
arXiv Detail & Related papers (2025-01-02T02:35:38Z) - An Automatic Graph Construction Framework based on Large Language Models for Recommendation [49.51799417575638]
We introduce AutoGraph, an automatic graph construction framework based on large language models for recommendation.<n>LLMs infer the user preference and item knowledge, which is encoded as semantic vectors.<n>Latent factors are incorporated as extra nodes to link the user/item nodes, resulting in a graph with in-depth global-view semantics.
arXiv Detail & Related papers (2024-12-24T07:51:29Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
This paper aims to improve the state of the art of automatic construction and completion of knowledge graphs from text.
In this context, one emerging paradigm is in-context learning where a language model is used as it is with a prompt.
arXiv Detail & Related papers (2023-05-15T17:10:19Z) - Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data
Programming [77.38174112525168]
We present Nemo, an end-to-end interactive Supervision system that improves overall productivity of WS learning pipeline by an average 20% (and up to 47% in one task) compared to the prevailing WS supervision approach.
arXiv Detail & Related papers (2022-03-02T19:57:32Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Incorporating Joint Embeddings into Goal-Oriented Dialogues with
Multi-Task Learning [8.662586355051014]
We propose an RNN-based end-to-end encoder-decoder architecture which is trained with joint embeddings of the knowledge graph and the corpus as input.
The model provides an additional integration of user intent along with text generation, trained with a multi-task learning paradigm.
arXiv Detail & Related papers (2020-01-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.