Enhancing Epidemic Forecasting: Evaluating the Role of Mobility Data and Graph Convolutional Networks
- URL: http://arxiv.org/abs/2506.11028v1
- Date: Tue, 20 May 2025 12:23:18 GMT
- Title: Enhancing Epidemic Forecasting: Evaluating the Role of Mobility Data and Graph Convolutional Networks
- Authors: Suhan Guo, Zhenghao Xu, Furao Shen, Jian Zhao,
- Abstract summary: This study addresses the gap between machine learning algorithms and their epidemiological applications.<n>We adopt a two-phase approach: first, assessing the significance of mobility data through a pilot study, then evaluating the impact of Graph Convolutional Networks (GCNs) on a transformer backbone.<n>Our findings reveal that while mobility data and GCN modules do not significantly enhance forecasting performance, the inclusion of mortality and hospitalization data markedly improves model accuracy.
- Score: 9.460023981858319
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate prediction of contagious disease outbreaks is vital for informed decision-making. Our study addresses the gap between machine learning algorithms and their epidemiological applications, noting that methods optimal for benchmark datasets often underperform with real-world data due to difficulties in incorporating mobility information. We adopt a two-phase approach: first, assessing the significance of mobility data through a pilot study, then evaluating the impact of Graph Convolutional Networks (GCNs) on a transformer backbone. Our findings reveal that while mobility data and GCN modules do not significantly enhance forecasting performance, the inclusion of mortality and hospitalization data markedly improves model accuracy. Additionally, a comparative analysis between GCN-derived spatial maps and lockdown orders suggests a notable correlation, highlighting the potential of spatial maps as sensitive indicators for mobility. Our research offers a novel perspective on mobility representation in predictive modeling for contagious diseases, empowering decision-makers to better prepare for future outbreaks.
Related papers
- Physics-informed deep learning for infectious disease forecasting [3.3618265137908527]
We propose a new infectious disease forecasting model based on physics-informed neural networks (PINNs)<n>Using state-level COVID-19 data from California, we demonstrate that the PINN model accurately predicts cases, deaths, and hospitalizations.
arXiv Detail & Related papers (2025-01-16T05:07:05Z) - Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
Gradient Boosting Models (GBMs) outperformed sequential models in terms of training speed, interpretability, and reliability.
A 5-minute prediction window was chosen for timely intervention, with minute-levels standardizing the data.
This study highlights ML's potential to improve triage and reduce alarm fatigue.
arXiv Detail & Related papers (2024-10-30T23:24:28Z) - Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
This paper outlines an approach in the domain of federated survival analysis, specifically the Cox Proportional Hazards (CoxPH) model.
We present an FL approach that employs feature-based clustering to enhance model accuracy across synthetic datasets and real-world applications.
arXiv Detail & Related papers (2024-07-20T18:34:20Z) - A Short Survey of Human Mobility Prediction in Epidemic Modeling from Transformers to LLMs [0.0]
Understanding how people move during epidemics is essential for modeling the spread of diseases.
Forecasting population movement is crucial for informing models and facilitating effective response planning in public health emergencies.
We review a range of approaches utilizing both pretrained language models like BERT and Large Language Models (LLMs) tailored specifically for mobility prediction tasks.
arXiv Detail & Related papers (2024-04-25T17:52:19Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Amplifying Pathological Detection in EEG Signaling Pathways through
Cross-Dataset Transfer Learning [10.212217551908525]
We study the effectiveness of data and model scaling and cross-dataset knowledge transfer in a real-world pathology classification task.
We identify the challenges of possible negative transfer and emphasize the significance of some key components.
Our findings indicate a small and generic model (e.g. ShallowNet) performs well on a single dataset, however, a larger model (e.g. TCN) performs better on transfer and learning from a larger and diverse dataset.
arXiv Detail & Related papers (2023-09-19T20:09:15Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
We propose a novel hybrid model called MepoGNN for multi-step multi-region epidemic forecasting.
Our model can not only predict the number of confirmed cases but also explicitly learn the epidemiological parameters.
arXiv Detail & Related papers (2023-06-26T17:09:43Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.