Task-aligned prompting improves zero-shot detection of AI-generated images by Vision-Language Models
- URL: http://arxiv.org/abs/2506.11031v2
- Date: Mon, 16 Jun 2025 01:28:03 GMT
- Title: Task-aligned prompting improves zero-shot detection of AI-generated images by Vision-Language Models
- Authors: Zoher Kachwala, Danishjeet Singh, Danielle Yang, Filippo Menczer,
- Abstract summary: In this work, we investigate the use of pre-trained Vision-Language Models for zero-shot detection of AI-generated images.<n>We show that task-aligned prompting elicits more focused reasoning and significantly improves performance without fine-tuning.<n>Our findings show that task-aligned prompts elicit more focused reasoning and enhance latent capabilities in VLMs.
- Score: 2.005104318774207
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As image generators produce increasingly realistic images, concerns about potential misuse continue to grow. Supervised detection relies on large, curated datasets and struggles to generalize across diverse generators. In this work, we investigate the use of pre-trained Vision-Language Models (VLMs) for zero-shot detection of AI-generated images. While off-the-shelf VLMs exhibit some task-specific reasoning and chain-of-thought prompting offers gains, we show that task-aligned prompting elicits more focused reasoning and significantly improves performance without fine-tuning. Specifically, prefixing the model's response with the phrase "Let's examine the style and the synthesis artifacts" -- a method we call zero-shot-s$^2$ -- boosts Macro F1 scores by 8%-29%. These gains are consistent for two widely used open-source models and across three recent, diverse datasets spanning human faces, objects, and animals with images generated by 16 different models -- demonstrating strong generalization. We further evaluate the approach across three additional model sizes and observe improvements in most dataset-model combinations -- suggesting robustness to model scale. Surprisingly, self-consistency, a behavior previously observed in language reasoning, where aggregating answers from diverse reasoning paths improves performance, also holds in this setting. Even here, zero-shot-s$^2$ scales better than chain-of-thought in most cases -- indicating that it elicits more useful diversity. Our findings show that task-aligned prompts elicit more focused reasoning and enhance latent capabilities in VLMs, like the detection of AI-generated images -- offering a simple, generalizable, and explainable alternative to supervised methods. Our code is publicly available on github: https://github.com/Zoher15/Zero-shot-s2.
Related papers
- FakeReasoning: Towards Generalizable Forgery Detection and Reasoning [24.8865218866598]
We propose modeling AI-generated image detection and explanation as a Forgery Detection and Reasoning task (FDR-Task)<n>We introduce the Multi-Modal Forgery Reasoning dataset (MMFR-Dataset), a large-scale dataset containing 100K images across 10 generative models.<n>We also propose FakeReasoning, a forgery detection and reasoning framework with two key components.
arXiv Detail & Related papers (2025-03-27T06:54:06Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
We analyze existing state-of-the-art AIGI detection methods based on frozen CLIP embeddings.
We show how to interpret them, shedding light on how images produced by various AI generators differ from real ones.
arXiv Detail & Related papers (2024-06-21T10:33:09Z) - Visual Delta Generator with Large Multi-modal Models for Semi-supervised Composed Image Retrieval [50.72924579220149]
Composed Image Retrieval (CIR) is a task that retrieves images similar to a query, based on a provided textual modification.
Current techniques rely on supervised learning for CIR models using labeled triplets of the reference image, text, target image.
We propose a new semi-supervised CIR approach where we search for a reference and its related target images in auxiliary data.
arXiv Detail & Related papers (2024-04-23T21:00:22Z) - Raising the Bar of AI-generated Image Detection with CLIP [50.345365081177555]
The aim of this work is to explore the potential of pre-trained vision-language models (VLMs) for universal detection of AI-generated images.
We develop a lightweight detection strategy based on CLIP features and study its performance in a wide variety of challenging scenarios.
arXiv Detail & Related papers (2023-11-30T21:11:20Z) - Improving Zero-shot Generalization and Robustness of Multi-modal Models [70.14692320804178]
Multi-modal image-text models such as CLIP and LiT have demonstrated impressive performance on image classification benchmarks.
We investigate the reasons for this performance gap and find that many of the failure cases are caused by ambiguity in the text prompts.
We propose a simple and efficient way to improve accuracy on such uncertain images by making use of the WordNet hierarchy.
arXiv Detail & Related papers (2022-12-04T07:26:24Z) - Composing Ensembles of Pre-trained Models via Iterative Consensus [95.10641301155232]
We propose a unified framework for composing ensembles of different pre-trained models.
We use pre-trained models as "generators" or "scorers" and compose them via closed-loop iterative consensus optimization.
We demonstrate that consensus achieved by an ensemble of scorers outperforms the feedback of a single scorer.
arXiv Detail & Related papers (2022-10-20T18:46:31Z) - Multimodal Knowledge Alignment with Reinforcement Learning [103.68816413817372]
ESPER extends language-only zero-shot models to unseen multimodal tasks, like image and audio captioning.
Our key novelty is to use reinforcement learning to align multimodal inputs to language model generations without direct supervision.
Experiments demonstrate that ESPER outperforms baselines and prior work on a variety of zero-shot tasks.
arXiv Detail & Related papers (2022-05-25T10:12:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.