Decoding Cortical Microcircuits: A Generative Model for Latent Space Exploration and Controlled Synthesis
- URL: http://arxiv.org/abs/2506.11062v1
- Date: Thu, 29 May 2025 16:39:31 GMT
- Title: Decoding Cortical Microcircuits: A Generative Model for Latent Space Exploration and Controlled Synthesis
- Authors: Xingyu Liu, Yubin Li, Guozhang Chen,
- Abstract summary: A central idea in understanding brains and building artificial intelligence is that structure determines function.<n>Yet, how the brain's complex structure arises from a limited set of genetic instructions remains a key question.<n>This work offers a new way to investigate the design principles of neural circuits and explore how structure gives rise to function.
- Score: 11.702970031377307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A central idea in understanding brains and building artificial intelligence is that structure determines function. Yet, how the brain's complex structure arises from a limited set of genetic instructions remains a key question. The ultra high-dimensional detail of neural connections vastly exceeds the information storage capacity of genes, suggesting a compact, low-dimensional blueprint must guide brain development. Our motivation is to uncover this blueprint. We introduce a generative model, to learn this underlying representation from detailed connectivity maps of mouse cortical microcircuits. Our model successfully captures the essential structural information of these circuits in a compressed latent space. We found that specific, interpretable directions within this space directly relate to understandable network properties. Building on this, we demonstrate a novel method to controllably generate new, synthetic microcircuits with desired structural features by navigating this latent space. This work offers a new way to investigate the design principles of neural circuits and explore how structure gives rise to function, potentially informing the development of more advanced artificial neural networks.
Related papers
- Unveiling and Steering Connectome Organization with Interpretable Latent Variables [11.702970031377307]
We propose a framework that combines subgraph extraction from the Drosophila connectome, FlyWire, with a generative model to derive interpretable low-dimensional representations of neural circuitry.<n>This research offers a novel tool for understanding brain architecture and a potential avenue for designing bio-inspired artificial neural networks.
arXiv Detail & Related papers (2025-05-19T11:54:40Z) - Spatial embedding promotes a specific form of modularity with low entropy and heterogeneous spectral dynamics [0.0]
Spatially embedded recurrent neural networks provide a promising avenue to study how modelled constraints shape the combined structural and functional organisation of networks over learning.
We show that it is possible to study these restrictions through entropic measures of the neural weights and eigenspectrum, across both rate and spiking neural networks.
This work deepens our understanding of constrained learning in neural networks, across coding schemes and tasks, where solutions to simultaneous structural and functional objectives must be accomplished in tandem.
arXiv Detail & Related papers (2024-09-26T10:00:05Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Exploiting Large Neuroimaging Datasets to Create Connectome-Constrained
Approaches for more Robust, Efficient, and Adaptable Artificial Intelligence [4.998666322418252]
We envision a pipeline to utilize large neuroimaging datasets, including maps of the brain.
We have developed a technique for discovery of repeated subcircuits, or motifs.
Third, the team analyzed circuitry for memory formation in the fruit fly connectome, enabling the design of a novel generative replay approach.
arXiv Detail & Related papers (2023-05-26T23:04:53Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
We argue that computational models are key tools for elucidating possible functionalities that emerge from network interactions.
Here we review several classes of models including spiking neurons, integrate and fire neurons.
We hope these studies will inform future developments in artificial intelligence algorithms as well as help validate our understanding of brain processes.
arXiv Detail & Related papers (2022-03-29T10:28:01Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - On the Exploitation of Neuroevolutionary Information: Analyzing the Past
for a More Efficient Future [60.99717891994599]
We propose an approach that extracts information from neuroevolutionary runs, and use it to build a metamodel.
We inspect the best structures found during neuroevolutionary searches of generative adversarial networks with varying characteristics.
arXiv Detail & Related papers (2021-05-26T20:55:29Z) - A multi-agent model for growing spiking neural networks [0.0]
This project has explored rules for growing the connections between the neurons in Spiking Neural Networks as a learning mechanism.
Results in a simulation environment showed that for a given set of parameters it is possible to reach topologies that reproduce the tested functions.
This project also opens the door to the usage of techniques like genetic algorithms for obtaining the best suited values for the model parameters.
arXiv Detail & Related papers (2020-09-21T15:11:29Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
We propose that the immature prefrontal cortex (PFC) use its primary functionality of detecting hierarchical patterns in temporal signals.
Our hypothesis is that the PFC detects the hierarchical structure in temporal sequences in the form of ordinal patterns and use them to index information hierarchically in different parts of the brain.
By doing so, it gives the tools to the language-ready brain for manipulating abstract knowledge and planning temporally ordered information.
arXiv Detail & Related papers (2020-05-22T14:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.