AssertBench: A Benchmark for Evaluating Self-Assertion in Large Language Models
- URL: http://arxiv.org/abs/2506.11110v1
- Date: Sun, 08 Jun 2025 14:08:22 GMT
- Title: AssertBench: A Benchmark for Evaluating Self-Assertion in Large Language Models
- Authors: Jaeho Lee, Atharv Chowdhary,
- Abstract summary: AssertBench addresses how directional framing of factually true statements influences model agreement.<n>We construct two framing prompts: one where the user claims the statement is factually correct, and another where the user claims it is incorrect.<n>We then record the model's agreement and reasoning.
- Score: 12.515874333424929
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent benchmarks have probed factual consistency and rhetorical robustness in Large Language Models (LLMs). However, a knowledge gap exists regarding how directional framing of factually true statements influences model agreement, a common scenario for LLM users. AssertBench addresses this by sampling evidence-supported facts from FEVEROUS, a fact verification dataset. For each (evidence-backed) fact, we construct two framing prompts: one where the user claims the statement is factually correct, and another where the user claims it is incorrect. We then record the model's agreement and reasoning. The desired outcome is that the model asserts itself, maintaining consistent truth evaluation across both framings, rather than switching its evaluation to agree with the user. AssertBench isolates framing-induced variability from the model's underlying factual knowledge by stratifying results based on the model's accuracy on the same claims when presented neutrally. In doing so, this benchmark aims to measure an LLM's ability to "stick to its guns" when presented with contradictory user assertions about the same fact. The complete source code is available at https://github.com/achowd32/assert-bench.
Related papers
- CRAVE: A Conflicting Reasoning Approach for Explainable Claim Verification Using LLMs [15.170312674645535]
CRAVE is a Conflicting Reasoning Approach for explainable claim VErification.<n>It can verify complex claims based on the conflicting rationales reasoned by large language models.<n>CRAVE achieves much better performance than state-of-the-art methods.
arXiv Detail & Related papers (2025-04-21T07:20:31Z) - Aligning Large Language Models for Faithful Integrity Against Opposing Argument [71.33552795870544]
Large Language Models (LLMs) have demonstrated impressive capabilities in complex reasoning tasks.<n>They can be easily misled by unfaithful arguments during conversations, even when their original statements are correct.<n>We propose a novel framework, named Alignment for Faithful Integrity with Confidence Estimation.
arXiv Detail & Related papers (2025-01-02T16:38:21Z) - Self-Adaptive Paraphrasing and Preference Learning for Improved Claim Verifiability [9.088303226909277]
In fact-checking, structure and phrasing of claims critically influence a model's ability to predict verdicts accurately.<n>We propose a self-adaptive approach to extract claims that is not reliant on labeled training data.<n>We show that this novel setup extracts a claim paraphrase that is more verifiable than their original social media formulations.
arXiv Detail & Related papers (2024-12-16T10:54:57Z) - Factcheck-Bench: Fine-Grained Evaluation Benchmark for Automatic Fact-checkers [121.53749383203792]
We present a holistic end-to-end solution for annotating the factuality of large language models (LLMs)-generated responses.
We construct an open-domain document-level factuality benchmark in three-level granularity: claim, sentence and document.
Preliminary experiments show that FacTool, FactScore and Perplexity are struggling to identify false claims.
arXiv Detail & Related papers (2023-11-15T14:41:57Z) - FactCHD: Benchmarking Fact-Conflicting Hallucination Detection [64.4610684475899]
FactCHD is a benchmark designed for the detection of fact-conflicting hallucinations from LLMs.
FactCHD features a diverse dataset that spans various factuality patterns, including vanilla, multi-hop, comparison, and set operation.
We introduce Truth-Triangulator that synthesizes reflective considerations by tool-enhanced ChatGPT and LoRA-tuning based on Llama2.
arXiv Detail & Related papers (2023-10-18T16:27:49Z) - Generating Benchmarks for Factuality Evaluation of Language Models [61.69950787311278]
We propose FACTOR: Factual Assessment via Corpus TransfORmation, a scalable approach for evaluating LM factuality.
FACTOR automatically transforms a factual corpus of interest into a benchmark evaluating an LM's propensity to generate true facts from the corpus vs. similar but incorrect statements.
We show that: (i) our benchmark scores increase with model size and improve when the LM is augmented with retrieval; (ii) benchmark score and perplexity do not always agree on model ranking; (iii) when perplexity and benchmark score disagree, the latter better reflects factuality in open-ended generation.
arXiv Detail & Related papers (2023-07-13T17:14:38Z) - SAGA: Summarization-Guided Assert Statement Generation [34.51502565985728]
This paper presents a novel summarization-guided approach for automatically generating assert statements.
We leverage a pre-trained language model as the reference architecture and fine-tune it on the task of assert statement generation.
arXiv Detail & Related papers (2023-05-24T07:03:21Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of Open Information Extraction [49.15931834209624]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.<n>We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.<n>By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
We introduce the methodology of Faithfulness-through-Counterfactuals.
It generates a counterfactual hypothesis based on the logical predicates expressed in the explanation.
It then evaluates if the model's prediction on the counterfactual is consistent with that expressed logic.
arXiv Detail & Related papers (2022-05-25T03:40:59Z) - AmbiFC: Fact-Checking Ambiguous Claims with Evidence [57.7091560922174]
We present AmbiFC, a fact-checking dataset with 10k claims derived from real-world information needs.
We analyze disagreements arising from ambiguity when comparing claims against evidence in AmbiFC.
We develop models for predicting veracity handling this ambiguity via soft labels.
arXiv Detail & Related papers (2021-04-01T17:40:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.