FactCHD: Benchmarking Fact-Conflicting Hallucination Detection
- URL: http://arxiv.org/abs/2310.12086v3
- Date: Sun, 26 May 2024 16:37:01 GMT
- Title: FactCHD: Benchmarking Fact-Conflicting Hallucination Detection
- Authors: Xiang Chen, Duanzheng Song, Honghao Gui, Chenxi Wang, Ningyu Zhang, Yong Jiang, Fei Huang, Chengfei Lv, Dan Zhang, Huajun Chen,
- Abstract summary: FactCHD is a benchmark designed for the detection of fact-conflicting hallucinations from LLMs.
FactCHD features a diverse dataset that spans various factuality patterns, including vanilla, multi-hop, comparison, and set operation.
We introduce Truth-Triangulator that synthesizes reflective considerations by tool-enhanced ChatGPT and LoRA-tuning based on Llama2.
- Score: 64.4610684475899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite their impressive generative capabilities, LLMs are hindered by fact-conflicting hallucinations in real-world applications. The accurate identification of hallucinations in texts generated by LLMs, especially in complex inferential scenarios, is a relatively unexplored area. To address this gap, we present FactCHD, a dedicated benchmark designed for the detection of fact-conflicting hallucinations from LLMs. FactCHD features a diverse dataset that spans various factuality patterns, including vanilla, multi-hop, comparison, and set operation. A distinctive element of FactCHD is its integration of fact-based evidence chains, significantly enhancing the depth of evaluating the detectors' explanations. Experiments on different LLMs expose the shortcomings of current approaches in detecting factual errors accurately. Furthermore, we introduce Truth-Triangulator that synthesizes reflective considerations by tool-enhanced ChatGPT and LoRA-tuning based on Llama2, aiming to yield more credible detection through the amalgamation of predictive results and evidence. The benchmark dataset is available at https://github.com/zjunlp/FactCHD.
Related papers
- Mitigating Entity-Level Hallucination in Large Language Models [11.872916697604278]
This paper proposes Dynamic Retrieval Augmentation based on hallucination Detection (DRAD) as a novel method to detect and mitigate hallucinations in Large Language Models (LLMs)
Experiment results show that DRAD demonstrates superior performance in both detecting and mitigating hallucinations in LLMs.
arXiv Detail & Related papers (2024-07-12T16:47:34Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - Drowzee: Metamorphic Testing for Fact-Conflicting Hallucination Detection in Large Language Models [11.138489774712163]
We propose an innovative approach leveraging logic programming to enhance metamorphic testing for detecting Fact-Conflicting Hallucinations (FCH)
Our method generates test cases and detects hallucinations across six different large language models spanning nine domains, revealing rates ranging from 24.7% to 59.8%.
arXiv Detail & Related papers (2024-05-01T17:24:42Z) - KnowHalu: Hallucination Detection via Multi-Form Knowledge Based Factual Checking [55.2155025063668]
KnowHalu is a novel approach for detecting hallucinations in text generated by large language models (LLMs)
It uses step-wise reasoning, multi-formulation query, multi-form knowledge for factual checking, and fusion-based detection mechanism.
Our evaluations demonstrate that KnowHalu significantly outperforms SOTA baselines in detecting hallucinations across diverse tasks.
arXiv Detail & Related papers (2024-04-03T02:52:07Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields.
LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations.
We propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs.
arXiv Detail & Related papers (2023-11-22T08:39:17Z) - Chainpoll: A high efficacy method for LLM hallucination detection [0.0]
We introduce ChainPoll, an innovative hallucination detection method that excels compared to its counterparts.
We also unveil RealHall, a refined collection of benchmark datasets to assess hallucination detection metrics from recent studies.
arXiv Detail & Related papers (2023-10-22T14:45:14Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
Large Language Models (LLMs) generate hallucinations, which can cause significant damage when deployed for mission-critical tasks.
We propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion.
We empirically evaluate our method and existing zero-resource detection methods on two datasets.
arXiv Detail & Related papers (2023-10-10T10:14:59Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.