論文の概要: Model Discovery and Graph Simulation: A Lightweight Gateway to Chaos Engineering
- arxiv url: http://arxiv.org/abs/2506.11176v2
- Date: Tue, 30 Sep 2025 13:34:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 17:09:04.035261
- Title: Model Discovery and Graph Simulation: A Lightweight Gateway to Chaos Engineering
- Title(参考訳): モデル発見とグラフシミュレーション - カオスエンジニアリングへの軽量ゲートウェイ
- Authors: Anatoly A. Krasnovsky,
- Abstract要約: カオスエンジニアリングはレジリエンスのリスクを明らかにしますが、広く頻繁に実行するには高価で運用上のリスクがあります。
我々は、単純な接続のみのトポロジモデルにより、フェールストップフォールトの下で、高速で低リスクなアベイラビリティー推定を行うことができると主張している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Chaos engineering reveals resilience risks but is expensive and operationally risky to run broadly and often. Model-based analyses can estimate dependability, yet in practice they are tricky to build and keep current because models are typically handcrafted. We claim that a simple connectivity-only topological model - just the service-dependency graph plus replica counts - can provide fast, low-risk availability estimates under fail-stop faults. To make this claim practical without hand-built models, we introduce model discovery: an automated step that can run in CI/CD or as an observability-platform capability, synthesizing an explicit, analyzable model from artifacts teams already have (e.g., distributed traces, service-mesh telemetry, configs/manifests) - providing an accessible gateway for teams to begin resilience testing. As a proof by instance on the DeathStarBench Social Network, we extract the dependency graph from Jaeger and estimate availability across two deployment modes and five failure rates. The discovered model closely tracks live fault-injection results; with replication, median error at mid-range failure rates is near zero, while no-replication shows signed biases consistent with excluded mechanisms. These results create two opportunities: first, to triage and reduce the scope of expensive chaos experiments in advance, and second, to generate real-time signals on the system's resilience posture as its topology evolves, preserving live validation for the most critical or ambiguous scenarios.
- Abstract(参考訳): カオスエンジニアリングはレジリエンスのリスクを明らかにしますが、広く頻繁に実行するには高価で運用上のリスクがあります。
モデルに基づく分析は、信頼性を見積もることができるが、実際には、モデルは通常手作りであるため、ビルドと電流の維持が難しい。
単純な接続のみのトポロジモデル — サービス依存グラフとレプリカ数 — は、フェールストップ障害の下で、高速で低リスクな可用性の見積を提供することができる、と私たちは主張しています。
これは、チームがすでに持っているアーティファクト(例えば、分散トレース、サービスメッシュテレメトリ、設定/管理)から明示的に分析可能なモデルを合成することで、チームがレジリエンステストを開始するためのアクセス可能なゲートウェイを提供する。
例えば、DeathStarBench Social Networkの証明として、Jaegerから依存グラフを抽出し、2つのデプロイモードと5つの障害率で可用性を推定する。
レプリケーションでは、中距離障害率の中央値エラーはゼロに近いが、非レプリケーションでは、排除されたメカニズムと整合した符号付きバイアスが示される。
これらの結果は2つの機会を生み出します。ひとつは、前もって高価なカオス実験のスコープをトリアージし削減し、もうひとつは、トポロジが進化するにつれてシステムのレジリエンス姿勢にリアルタイムな信号を生成し、最も重要または曖昧なシナリオのライブ検証を保存することです。
関連論文リスト
- Retrieval Augmented Anomaly Detection (RAAD): Nimble Model Adjustment Without Retraining [3.037546128667634]
Retrieval Augmented Anomaly Detectionは、Retrieval Augmented Generationからインスピレーションを得た新しい手法である。
人間の注釈付きサンプルはベクトルストアに送られ、モデル推論のために、非常に次の処理バッチでモデル出力を変更することができる。
論文 参考訳(メタデータ) (2025-02-26T20:17:16Z) - Calibrating Deep Neural Network using Euclidean Distance [5.3612053942581275]
機械学習では、Focal Lossは、サンプルの分類が難しいことを強調することで、誤分類率を減らすために一般的に使用される。
高校正誤差は予測確率と実際の結果との相違を示し、モデルの信頼性に影響を及ぼす。
本研究では,FCL (Focal Loss) と呼ばれる新しい損失関数を導入する。
論文 参考訳(メタデータ) (2024-10-23T23:06:50Z) - Model Collapse Demystified: The Case of Regression [12.115359951879462]
大規模言語や画像生成モデルの普及期における「モデル崩壊」現象について検討する。
我々は、この現象を幅広い状況で定量的に概説する分析式を得る。
モデル崩壊を緩和する適応正則化に基づく簡単な戦略を提案する。
論文 参考訳(メタデータ) (2024-02-12T15:26:01Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
グラフニューラルネットワーク(GNN)は,グラフ特性の分類において異常な性能を示した。
トレーニングとテストデータの選択バイアスが原因で、分散偏差が広まっています。
仮想サンプルの分布偏差を測定するためのOODキャリブレーションを提案する。
論文 参考訳(メタデータ) (2023-08-16T13:10:27Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Contextual Dropout: An Efficient Sample-Dependent Dropout Module [60.63525456640462]
ドロップアウトは、ディープニューラルネットワークのトレーニングプロセスを正規化するシンプルで効果的なモジュールとして実証されています。
単純でスケーラブルなサンプル依存型ドロップアウトモジュールとして,効率的な構造設計によるコンテキスト型ドロップアウトを提案する。
提案手法は,不確実性推定の精度と品質の両面において,ベースライン法よりも優れていた。
論文 参考訳(メタデータ) (2021-03-06T19:30:32Z) - Know Where To Drop Your Weights: Towards Faster Uncertainty Estimation [7.605814048051737]
低レイテンシアプリケーションで使用されるモデルの不確かさを推定することは、不確実性推定技術が計算的に要求される性質のためである。
本稿では、ニューラルネットワークのサブセットを用いてMCDCの不確実性をモデル化するSelect-DCを提案する。
我々は,不確実性をモデル化するためにGFLOPSをモンテカルロDropConnectと比較して大幅に削減し,性能の限界トレードオフを示した。
論文 参考訳(メタデータ) (2020-10-27T02:56:27Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
本研究では,不正確なモデル推定による実データとシミュレーションデータのギャップを埋めて,より良いポリシ最適化を実現する方法について検討する。
本稿では,教師なしモデル適応を導入したモデルベース強化学習フレームワークAMPOを提案する。
提案手法は,一連の連続制御ベンチマークタスクにおけるサンプル効率の観点から,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-10-19T14:19:42Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Identifying Statistical Bias in Dataset Replication [102.92137353938388]
モデルが(11-14%) の精度低下を示すImageNetデータセットの再現について検討した。
同定された統計バイアスを補正した後、推定3.6%のpm 1.5%の当初の11.7%のpm 1.0%の精度低下しか記録されていない。
論文 参考訳(メタデータ) (2020-05-19T17:48:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。