Social Scientists on the Role of AI in Research
- URL: http://arxiv.org/abs/2506.11255v1
- Date: Thu, 12 Jun 2025 19:55:36 GMT
- Title: Social Scientists on the Role of AI in Research
- Authors: Tatiana Chakravorti, Xinyu Wang, Pranav Narayanan Venkit, Sai Koneru, Kevin Munger, Sarah Rajtmajer,
- Abstract summary: We present a community-centric study drawing on 284 survey responses and 15 semi-structured interviews with social scientists.<n>We find that the use of AI in research settings has increased significantly among social scientists in step with the widespread popularity of generative AI (genAI)<n>Ethical concerns, particularly around automation bias, deskilling, research misconduct, complex interpretability, and representational harm, are raised in relation to genAI.
- Score: 2.2665233748698355
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The integration of artificial intelligence (AI) into social science research practices raises significant technological, methodological, and ethical issues. We present a community-centric study drawing on 284 survey responses and 15 semi-structured interviews with social scientists, describing their familiarity with, perceptions of the usefulness of, and ethical concerns about the use of AI in their field. A crucial innovation in study design is to split our survey sample in half, providing the same questions to each -- but randomizing whether participants were asked about "AI" or "Machine Learning" (ML). We find that the use of AI in research settings has increased significantly among social scientists in step with the widespread popularity of generative AI (genAI). These tools have been used for a range of tasks, from summarizing literature reviews to drafting research papers. Some respondents used these tools out of curiosity but were dissatisfied with the results, while others have now integrated them into their typical workflows. Participants, however, also reported concerns with the use of AI in research contexts. This is a departure from more traditional ML algorithms which they view as statistically grounded. Participants express greater trust in ML, citing its relative transparency compared to black-box genAI systems. Ethical concerns, particularly around automation bias, deskilling, research misconduct, complex interpretability, and representational harm, are raised in relation to genAI. To guide this transition, we offer recommendations for AI developers, researchers, educators, and policymakers focusing on explainability, transparency, ethical safeguards, sustainability, and the integration of lived experiences into AI design and evaluation processes.
Related papers
- Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
We argue that the efforts aiming to study AI's ethical ramifications should be made in tandem with those evaluating its impacts on the environment.<n>We propose best practices to better integrate AI ethics and sustainability in AI research and practice.
arXiv Detail & Related papers (2025-04-01T13:53:11Z) - Navigating Ethical Challenges in Generative AI-Enhanced Research: The ETHICAL Framework for Responsible Generative AI Use [0.0]
The rapid adoption of generative artificial intelligence (GenAI) in research presents both opportunities and ethical challenges.<n>This paper develops the ETHICAL framework, which is a practical guide for responsible GenAI use in research.
arXiv Detail & Related papers (2024-12-11T05:49:11Z) - AI-Tutoring in Software Engineering Education [0.7631288333466648]
We conducted an exploratory case study by integrating the GPT-3.5-Turbo model as an AI-Tutor within the APAS Artemis.
The findings highlight advantages, such as timely feedback and scalability.
However, challenges like generic responses and students' concerns about a learning progress inhibition when using the AI-Tutor were also evident.
arXiv Detail & Related papers (2024-04-03T08:15:08Z) - AI for social science and social science of AI: A Survey [47.5235291525383]
Recent advancements in artificial intelligence have sparked a rethinking of artificial general intelligence possibilities.
The increasing human-like capabilities of AI are also attracting attention in social science research.
arXiv Detail & Related papers (2024-01-22T10:57:09Z) - Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
The push for Responsible AI (RAI) in such institutions underscores the increasing emphasis on integrating ethical considerations within AI design and development.
This paper aims to assess the awareness and preparedness regarding the ethical risks inherent in AI design and development.
Our results have revealed certain knowledge gaps concerning ethical, responsible, and inclusive AI, with limitations in awareness of the available AI ethics frameworks.
arXiv Detail & Related papers (2023-12-15T06:40:27Z) - The ethical ambiguity of AI data enrichment: Measuring gaps in research
ethics norms and practices [2.28438857884398]
This study explores how, and to what extent, comparable research ethics requirements and norms have developed for AI research and data enrichment.
Leading AI venues have begun to establish protocols for human data collection, but these are are inconsistently followed by authors.
arXiv Detail & Related papers (2023-06-01T16:12:55Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Measuring Ethics in AI with AI: A Methodology and Dataset Construction [1.6861004263551447]
We propose to use such newfound capabilities of AI technologies to augment our AI measuring capabilities.
We do so by training a model to classify publications related to ethical issues and concerns.
We highlight the implications of AI metrics, in particular their contribution towards developing trustful and fair AI-based tools and technologies.
arXiv Detail & Related papers (2021-07-26T00:26:12Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.