A Tale of Two Systems: Characterizing Architectural Complexity on Machine Learning-Enabled Systems
- URL: http://arxiv.org/abs/2506.11295v1
- Date: Thu, 12 Jun 2025 20:54:28 GMT
- Title: A Tale of Two Systems: Characterizing Architectural Complexity on Machine Learning-Enabled Systems
- Authors: Renato Cordeiro Ferreira,
- Abstract summary: This research aims to introduce a metrics-based architectural model to characterize the complexity of ML-Enabled Systems.<n>The goal is to support architectural decisions, providing a guideline for the inception and growth of these systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How can the complexity of ML-enabled systems be managed effectively? The goal of this research is to investigate how complexity affects ML-Enabled Systems (MLES). To address this question, this research aims to introduce a metrics-based architectural model to characterize the complexity of MLES. The goal is to support architectural decisions, providing a guideline for the inception and growth of these systems. This paper brings, side-by-side, the architecture representation of two systems that can be used as case studies for creating the metrics-based architectural model: the SPIRA and the Ocean Guard MLES.
Related papers
- A Metrics-Oriented Architectural Model to Characterize Complexity on Machine Learning-Enabled Systems [0.0]
This research aims to introduce a metrics-based architectural model to characterize the complexity of MLES.<n>The goal is to support architectural decisions, providing a guideline for the inception and growth of these systems.
arXiv Detail & Related papers (2025-06-09T19:02:19Z) - Semi-Automated Design of Data-Intensive Architectures [49.1574468325115]
This paper introduces a development methodology for data-intensive architectures.<n>It guides architects in (i) designing a suitable architecture for their specific application scenario, and (ii) selecting an appropriate set of concrete systems to implement the application.<n>We show that the description languages we adopt can capture the key aspects of data-intensive architectures proposed by researchers and practitioners.
arXiv Detail & Related papers (2025-03-21T16:01:11Z) - Boost, Disentangle, and Customize: A Robust System2-to-System1 Pipeline for Code Generation [58.799397354312596]
Large language models (LLMs) have demonstrated remarkable capabilities in various domains, particularly in system 1 tasks.<n>Recent research on System2-to-System1 methods surge, exploring the System 2 reasoning knowledge via inference-time computation.<n>In this paper, we focus on code generation, which is a representative System 2 task, and identify two primary challenges.
arXiv Detail & Related papers (2025-02-18T03:20:50Z) - A quantitative framework for evaluating architectural patterns in ML systems [49.1574468325115]
This study proposes a framework for quantitative assessment of architectural patterns in ML systems.<n>We focus on scalability and performance metrics for cost-effective CPU-based inference.
arXiv Detail & Related papers (2025-01-20T15:30:09Z) - An Analysis of MLOps Architectures: A Systematic Mapping Study [12.399094410444743]
This study provides an overview of the state of the art in MLOps from an architectural perspective.
Researchers and practitioners can use our findings to inform the architecture design of their MLOps systems.
arXiv Detail & Related papers (2024-06-28T11:38:50Z) - Large Multi-Modal Models (LMMs) as Universal Foundation Models for
AI-Native Wireless Systems [57.41621687431203]
Large language models (LLMs) and foundation models have been recently touted as a game-changer for 6G systems.
This paper presents a comprehensive vision on how to design universal foundation models tailored towards the deployment of artificial intelligence (AI)-native networks.
arXiv Detail & Related papers (2024-01-30T00:21:41Z) - Enhancing Architecture Frameworks by Including Modern Stakeholders and their Views/Viewpoints [48.87872564630711]
The stakeholders with data science and Machine Learning related concerns, such as data scientists and data engineers, are yet to be included in existing architecture frameworks.<n>We surveyed 61 subject matter experts from over 25 organizations in 10 countries.
arXiv Detail & Related papers (2023-08-09T21:54:34Z) - Real-world Machine Learning Systems: A survey from a Data-Oriented
Architecture Perspective [7.574538335342942]
Data-oriented Architecture (DOA) is an emerging concept that equips systems better for integrating ML models.
DOA extends current architectures to create data-driven, loosely coupled, decentralised, open systems.
This paper answers these questions by surveying real-world deployments of ML-based systems.
arXiv Detail & Related papers (2023-02-09T17:57:02Z) - A Survey of Machine Learning for Computer Architecture and Systems [18.620218353713476]
It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models.
Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed.
arXiv Detail & Related papers (2021-02-16T04:09:57Z) - Revealing the Invisible with Model and Data Shrinking for
Composite-database Micro-expression Recognition [49.463864096615254]
We analyze the influence of learning complexity, including the input complexity and model complexity.
We propose a recurrent convolutional network (RCN) to explore the shallower-architecture and lower-resolution input data.
We develop three parameter-free modules to integrate with RCN without increasing any learnable parameters.
arXiv Detail & Related papers (2020-06-17T06:19:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.