Byzantine Outside, Curious Inside: Reconstructing Data Through Malicious Updates
- URL: http://arxiv.org/abs/2506.11413v1
- Date: Fri, 13 Jun 2025 02:23:41 GMT
- Title: Byzantine Outside, Curious Inside: Reconstructing Data Through Malicious Updates
- Authors: Kai Yue, Richeng Jin, Chau-Wai Wong, Huaiyu Dai,
- Abstract summary: Federated learning (FL) enables decentralized machine learning without sharing raw data.<n>Privacy leakage is possible under commonly adopted FL protocols.<n>We introduce a novel threat model in FL, named the maliciously curious client.
- Score: 36.2911560725828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) enables decentralized machine learning without sharing raw data, allowing multiple clients to collaboratively learn a global model. However, studies reveal that privacy leakage is possible under commonly adopted FL protocols. In particular, a server with access to client gradients can synthesize data resembling the clients' training data. In this paper, we introduce a novel threat model in FL, named the maliciously curious client, where a client manipulates its own gradients with the goal of inferring private data from peers. This attacker uniquely exploits the strength of a Byzantine adversary, traditionally aimed at undermining model robustness, and repurposes it to facilitate data reconstruction attack. We begin by formally defining this novel client-side threat model and providing a theoretical analysis that demonstrates its ability to achieve significant reconstruction success during FL training. To demonstrate its practical impact, we further develop a reconstruction algorithm that combines gradient inversion with malicious update strategies. Our analysis and experimental results reveal a critical blind spot in FL defenses: both server-side robust aggregation and client-side privacy mechanisms may fail against our proposed attack. Surprisingly, standard server- and client-side defenses designed to enhance robustness or privacy may unintentionally amplify data leakage. Compared to the baseline approach, a mistakenly used defense may instead improve the reconstructed image quality by 10-15%.
Related papers
- A Stealthy Wrongdoer: Feature-Oriented Reconstruction Attack against Split Learning [14.110303634976272]
Split Learning (SL) is a distributed learning framework renowned for its privacy-preserving features and minimal computational requirements.<n>Previous research consistently highlights the potential privacy breaches in SL systems by server adversaries reconstructing training data.<n>This paper introduces a new semi-honest Data Reconstruction Attack on SL, named Feature-Oriented Reconstruction Attack (FORA)
arXiv Detail & Related papers (2024-05-07T08:38:35Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
Multi distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model.
FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack.
We propose Fed-EDKD technique to improve the current popular FL schemes to resist C-GANs attack.
arXiv Detail & Related papers (2023-07-25T08:15:55Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
Federated learning enables learning from decentralized data sources without compromising privacy.
It is vulnerable to model poisoning attacks, where malicious clients interfere with the training process.
We propose a new defense mechanism that focuses on the client-side, called FedDefender, to help benign clients train robust local models.
arXiv Detail & Related papers (2023-07-18T08:00:41Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
This paper presents a novel defense mechanism, CrowdGuard, that effectively mitigates backdoor attacks in Federated Learning.
CrowdGuard employs a server-located stacked clustering scheme to enhance its resilience to rogue client feedback.
The evaluation results demonstrate that CrowdGuard achieves a 100% True-Positive-Rate and True-Negative-Rate across various scenarios.
arXiv Detail & Related papers (2022-10-14T11:27:49Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - A Framework for Evaluating Gradient Leakage Attacks in Federated
Learning [14.134217287912008]
Federated learning (FL) is an emerging distributed machine learning framework for collaborative model training with a network of clients.
Recent studies have shown that even sharing local parameter updates from a client to the federated server may be susceptible to gradient leakage attacks.
We present a principled framework for evaluating and comparing different forms of client privacy leakage attacks.
arXiv Detail & Related papers (2020-04-22T05:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.