Stop learning it all to mitigate visual hallucination, Focus on the hallucination target
- URL: http://arxiv.org/abs/2506.11417v1
- Date: Fri, 13 Jun 2025 02:35:03 GMT
- Title: Stop learning it all to mitigate visual hallucination, Focus on the hallucination target
- Authors: Dokyoon Yoon, Youngsook Song, Woomyong Park,
- Abstract summary: Multimodal Large Language Models (MLLMs) frequently suffer from hallucination issues.<n> hallucinations undermine model reliability in practical applications.<n>Mymethod is a preference learning approach that mitigates hallucinations by focusing on targeted areas.
- Score: 0.10571493942475592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Large Language Models (MLLMs) frequently suffer from hallucination issues, generating information about objects that are not present in input images during vision-language tasks. These hallucinations particularly undermine model reliability in practical applications requiring accurate object identification. To address this challenge, we propose \mymethod,\ a preference learning approach that mitigates hallucinations by focusing on targeted areas where they occur. To implement this, we build a dataset containing hallucinated responses, correct responses, and target information (i.e., objects present in the images and the corresponding chunk positions in responses affected by hallucinations). By applying a preference learning method restricted to these specific targets, the model can filter out irrelevant signals and focus on correcting hallucinations. This allows the model to produce more factual responses by concentrating solely on relevant information. Experimental results demonstrate that \mymethod\ effectively reduces hallucinations across multiple vision hallucination tasks, improving the reliability and performance of MLLMs without diminishing overall performance.
Related papers
- Hallucinatory Image Tokens: A Training-free EAZY Approach on Detecting and Mitigating Object Hallucinations in LVLMs [15.479587108655393]
Large Vision-Language Models (LVLMs) still face challenges with object hallucination.<n>Our work shifts the focus to the image input source, investigating how specific image tokens contribute to hallucinations.<n>We introduce EAZY, a novel, training-free method that automatically identifies and Eliminates hAllucinations by Zeroing out hallucinatorY image tokens.
arXiv Detail & Related papers (2025-03-10T18:53:39Z) - Towards a Systematic Evaluation of Hallucinations in Large-Vision Language Models [57.58426038241812]
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance in complex multimodal tasks.<n>These models still suffer from hallucinations when required to implicitly recognize or infer diverse visual entities from images.<n>We propose a novel visual question answering (VQA) benchmark that employs contextual reasoning prompts as hallucination attacks.
arXiv Detail & Related papers (2024-12-29T23:56:01Z) - Devils in Middle Layers of Large Vision-Language Models: Interpreting, Detecting and Mitigating Object Hallucinations via Attention Lens [7.806633929976787]
Hallucinations in Large Vision-Language Models (LVLMs) significantly undermine their reliability.<n>This paper addresses how LVLMs process visual information and whether this process causes hallucination.<n>We propose a simple inference-time method that adjusts visual attention by integrating information across various heads.
arXiv Detail & Related papers (2024-11-23T03:40:05Z) - Investigating and Mitigating Object Hallucinations in Pretrained Vision-Language (CLIP) Models [22.42712853647949]
We present an in-depth investigation into the object hallucination problem specifically within the CLIP model.
We unveil that even in isolation, the CLIP model is prone to object hallucinations, suggesting that the hallucination problem is not solely due to the interaction between vision and language modalities.
We show the the enhanced model can be employed as a visual encoder, effectively alleviating the object hallucination issue in LVLMs.
arXiv Detail & Related papers (2024-10-04T06:24:49Z) - Multi-Object Hallucination in Vision-Language Models [28.135215173793785]
Large vision language models (LVLMs) often suffer from object hallucination.
Hallucinatory behaviors are influenced by data-specific factors, salience and frequency, and intrinsic model behaviors.
arXiv Detail & Related papers (2024-07-08T17:59:57Z) - Does Object Grounding Really Reduce Hallucination of Large Vision-Language Models? [53.89380284760555]
Large vision-language models (LVLMs) produce captions that mention concepts that cannot be found in the image.
These hallucinations erode the trustworthiness of LVLMs and are arguably among the main obstacles to their ubiquitous adoption.
Recent work suggests that addition of grounding objectives -- those that explicitly align image regions or objects to text spans -- reduces the amount of LVLM hallucination.
arXiv Detail & Related papers (2024-06-20T16:56:11Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [40.930238150365795]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.<n>We generate a small-size hallucination annotation dataset by proprietary models.<n>Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z) - Quantity Matters: Towards Assessing and Mitigating Number Hallucination in Large Vision-Language Models [57.42800112251644]
We focus on a specific type of hallucination-number hallucination, referring to models incorrectly identifying the number of certain objects in pictures.
We devise a training approach aimed at improving consistency to reduce number hallucinations, which leads to an 8% enhancement in performance over direct finetuning methods.
arXiv Detail & Related papers (2024-03-03T02:31:11Z) - Hallucination Augmented Contrastive Learning for Multimodal Large
Language Model [53.65682783591723]
Multi-modal large language models (MLLMs) have been shown to efficiently integrate natural language with visual information to handle multi-modal tasks.
However, MLLMs still face a fundamental limitation of hallucinations, where they tend to generate erroneous or fabricated information.
In this paper, we address hallucinations in MLLMs from a novel perspective of representation learning.
arXiv Detail & Related papers (2023-12-12T04:05:15Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z) - Evaluating Object Hallucination in Large Vision-Language Models [122.40337582958453]
This work presents the first systematic study on object hallucination of large vision-language models (LVLMs)
We find that LVLMs tend to generate objects that are inconsistent with the target images in the descriptions.
We propose a polling-based query method called POPE to evaluate the object hallucination.
arXiv Detail & Related papers (2023-05-17T16:34:01Z) - Plausible May Not Be Faithful: Probing Object Hallucination in
Vision-Language Pre-training [66.0036211069513]
Large-scale vision-language pre-trained models are prone to hallucinate non-existent visual objects when generating text.
We show that models achieving better scores on standard metrics could hallucinate objects more frequently.
Surprisingly, we find that patch-based features perform the best and smaller patch resolution yields a non-trivial reduction in object hallucination.
arXiv Detail & Related papers (2022-10-14T10:27:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.