Efficient Long-Context LLM Inference via KV Cache Clustering
- URL: http://arxiv.org/abs/2506.11418v1
- Date: Fri, 13 Jun 2025 02:36:15 GMT
- Title: Efficient Long-Context LLM Inference via KV Cache Clustering
- Authors: Jie Hu, Shengnan Wang, Yutong He, Ping Gong, Jiawei Yi, Juncheng Zhang, Youhui Bai, Renhai Chen, Gong Zhang, Cheng Li, Kun Yuan,
- Abstract summary: Existing approaches either discard potentially critical information needed for future generations or offer limited efficiency gains due to high computational overhead.<n>We introduce Chelsea, a simple yet effective framework for online KV cache clustering.<n>Chelsea achieves up to 80% reduction in KV cache memory usage while maintaining comparable model performance.
- Score: 25.995798911985847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) with extended context windows have become increasingly prevalent for tackling complex tasks. However, the substantial Key-Value (KV) cache required for long-context LLMs poses significant deployment challenges. Existing approaches either discard potentially critical information needed for future generations or offer limited efficiency gains due to high computational overhead. In this paper, we introduce Chelsea, a simple yet effective framework for online KV cache clustering. Our approach is based on the observation that key states exhibit high similarity along the sequence dimension. To enable efficient clustering, we divide the sequence into chunks and propose Chunked Soft Matching, which employs an alternating partition strategy within each chunk and identifies clusters based on similarity. Chelsea then merges the KV cache within each cluster into a single centroid. Additionally, we provide a theoretical analysis of the computational complexity and the optimality of the intra-chunk partitioning strategy. Extensive experiments across various models and long-context benchmarks demonstrate that Chelsea achieves up to 80% reduction in KV cache memory usage while maintaining comparable model performance. Moreover, with minimal computational overhead, Chelsea accelerates the decoding stage of inference by up to 3.19$\times$ and reduces end-to-end latency by up to 2.72$\times$.
Related papers
- AirCache: Activating Inter-modal Relevancy KV Cache Compression for Efficient Large Vision-Language Model Inference [11.73134417321505]
We propose AirCache, a novel KV cache compression method aimed at accelerating LVLMs inference.<n>We show that our method achieves comparable performance to the full cache while retaining only 10% of visual KV cache.
arXiv Detail & Related papers (2025-03-31T11:13:18Z) - WindowKV: Task-Adaptive Group-Wise KV Cache Window Selection for Efficient LLM Inference [9.572076809796448]
We propose a novel task-adaptive KV cache window selection method, WindowKV.<n>We show that WindowKV maintains a performance comparable to full KV cache retention while using only 12% of the original KV cache.<n>Our method also achieves state-of-the-art results in the Needle-in-a-Haystack evaluation, highlighting its effectiveness and robustness.
arXiv Detail & Related papers (2025-03-23T03:36:52Z) - DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance [125.81664663201282]
We introduce a new KV cache compression method dubbed DBudgetKV.<n>It features an attention-based metric to signal when the remaining KV cache is unlikely to match the full-cache performance.<n>Our method achieves lossless KV pruning effectively and robustly, exceeding 25% compression ratio on average.
arXiv Detail & Related papers (2025-02-24T06:33:39Z) - SCBench: A KV Cache-Centric Analysis of Long-Context Methods [61.025422435235456]
We introduce SCBench, a benchmark for evaluating long-context methods from a KV cachecentric perspective.<n>We provide an extensive KV cache-centric analysis of eight categories long-context solutions, including Gated Linear RNNs and Mamba-Attention hybrids.<n>Our findings show that sub-O(n) memory methods suffer in multi-turn scenarios, while sparse encoding with O(n) memory and sub-O(n2) pre-filling perform robustly.
arXiv Detail & Related papers (2024-12-13T17:59:52Z) - ClusterKV: Manipulating LLM KV Cache in Semantic Space for Recallable Compression [10.003118268356017]
Long context poses significant challenges for inference efficiency.<n>We introduce ClusterKV, which recalls tokens at the granularity of semantic clusters.<n>Experiment results show that ClusterKV attains negligible accuracy loss across various tasks with 32k context lengths.
arXiv Detail & Related papers (2024-12-04T10:58:27Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.<n>This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.<n>We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks [21.815661269986425]
We propose a novel KV cache merging approach, called KVMerger, to achieve adaptive KV cache compression for long-context tasks.
Our approach is inspired by the intriguing observation that key states exhibit high similarity at the token level within a single sequence.
We conduct extensive experiments to demonstrate the effectiveness of KVMerger for long-context tasks under constrained memory budgets.
arXiv Detail & Related papers (2024-07-11T12:50:42Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
We introduce a novel mechanism that leverages cascading sub-cache buffers to selectively retain the most relevant tokens.<n>Our method reduces prefill stage latency by a factor of 6.8 when compared to flash attention on 1M tokens.
arXiv Detail & Related papers (2024-06-24T03:59:17Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
We introduce an innovative method for optimizing the KV cache, which considerably minimizes its memory footprint.
CORM, a KV cache eviction policy, dynamically retains essential key-value pairs for inference without the need for model fine-tuning.
Our validation shows that CORM reduces the inference memory usage of KV cache by up to 70% with negligible performance degradation across six tasks in LongBench.
arXiv Detail & Related papers (2024-04-24T16:11:54Z) - SubGen: Token Generation in Sublinear Time and Memory [48.35076900702408]
Large language models (LLMs) have extensive memory requirements for token generation.
In this work, we focus on developing an efficient compression technique for the KV cache.
We have devised a novel caching method with sublinear complexity, employing online clustering on key tokens and online $ell$ sampling on values.
Not only does this algorithm ensure a sublinear memory footprint and sublinear time complexity, but we also establish a tight error bound for our approach.
arXiv Detail & Related papers (2024-02-08T22:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.