論文の概要: ReVeal: Self-Evolving Code Agents via Reliable Self-Verification
- arxiv url: http://arxiv.org/abs/2506.11442v2
- Date: Tue, 21 Oct 2025 12:49:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:07.840739
- Title: ReVeal: Self-Evolving Code Agents via Reliable Self-Verification
- Title(参考訳): ReVeal: 信頼性の高い自己検証による自己進化型コードエージェント
- Authors: Yiyang Jin, Kunzhao Xu, Hang Li, Xueting Han, Yanmin Zhou, Cheng Li, Jing Bai,
- Abstract要約: 自己検証とツールベースの評価を通じてコード生成を進化させる強化学習フレームワークであるReVealを紹介する。
推論において、この強化された自己検証により、3つしかトレーニングされていないLiveCodeBenchでは、自己構築されたテストとツールフィードバックを使用して、20ターン以上のコードを継続的に進化させることができる。
これらの調査結果は、RLトレーニングとテストタイムスケーリングのためのスケーラブルなパラダイムとしてのReVealの約束を強調し、より堅牢で自律的なAIエージェントへの道を開いた。
- 参考スコア(独自算出の注目度): 11.875519107421312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning with verifiable rewards (RLVR) has advanced the reasoning capabilities of large language models. However, existing methods rely solely on outcome rewards, without explicitly optimizing verification or leveraging reliable signals from realistic environments, leading to unreliable self-verification and limited test-time scaling. To address this, we widen the verification-generation asymmetry by explicitly optimizing self-verification, making it a reliable driver of deeper test-time scaling. We introduce ReVeal, a multi-turn reinforcement learning framework that evolves code generation through self-verification and tool-based evaluation. ReVeal structures long-horizon reasoning as iterative generation-verification turns and incorporates TAPO for turn-level credit assignment, fostering the co-evolution of code and test generation. At inference, this strengthened self-verification enables the model to use self-constructed tests and tool feedback to continuously evolve code for 20+ turns on LiveCodeBench despite training on only three. It also significantly improves Pass@k, indicating stronger exploration that expands the reasoning boundaries of the base model. These findings highlight the promise of ReVeal as a scalable paradigm for RL training and test-time scaling, paving the way for more robust and autonomous AI agents.
- Abstract(参考訳): 検証可能な報酬付き強化学習(RLVR)は,大規模言語モデルの推論能力を向上した。
しかし、既存の手法は、検証を明示的に最適化したり、現実的な環境から信頼できる信号を利用することなく、結果の報酬のみに頼っているため、信頼性の低い自己検証と限定的なテストタイムスケーリングにつながる。
これを解決するために、自己検証を明示的に最適化することで検証世代非対称性を広げ、より深いテスト時間スケーリングの信頼性の高いドライバとなる。
自己検証とツールベースの評価を通じてコード生成を進化させる多ターン強化学習フレームワークであるReVealを紹介する。
ReVealは、反復生成検証が回転し、ターンレベルのクレジット代入のためのTAPOを組み込んで、コードとテスト生成の共進化を促進する。
推論において、この強化された自己検証により、3つしかトレーニングされていないLiveCodeBenchでは、自己構築されたテストとツールフィードバックを使用して、20ターン以上のコードを継続的に進化させることができる。
また、Pass@kが大幅に改善され、ベースモデルの推論境界を広げる強力な探索が示される。
これらの調査結果は、RLトレーニングとテストタイムスケーリングのためのスケーラブルなパラダイムとしてのReVealの約束を強調し、より堅牢で自律的なAIエージェントへの道を開いた。
関連論文リスト
- RL as Regressor: A Reinforcement Learning Approach for Function Approximation [0.0]
強化学習(RL)問題としてフレーミング回帰を提案する。
モデルの予測をアクションとして扱い、予測誤差に基づいてカスタム報酬信号を定義することでこれを実証する。
我々は,RLフレームワークが回帰問題をうまく解決するだけでなく,目的の定義や学習プロセスの指導において柔軟性も向上することを示した。
論文 参考訳(メタデータ) (2025-07-31T21:39:24Z) - Agentic Reinforced Policy Optimization [66.96989268893932]
検証可能な報酬付き大規模強化学習(RLVR)は,大規模言語モデル(LLM)を単一ターン推論タスクに活用する効果を実証している。
現在のRLアルゴリズムは、モデル固有のロングホライゾン推論能力と、マルチターンツールインタラクションにおけるその習熟性のバランスが不十分である。
エージェント強化ポリシー最適化(ARPO: Agentic Reinforced Policy Optimization)は,マルチターンLDMエージェントを学習するためのエージェントRLアルゴリズムである。
論文 参考訳(メタデータ) (2025-07-26T07:53:11Z) - Scaling Up RL: Unlocking Diverse Reasoning in LLMs via Prolonged Training [121.5858973157225]
本研究では,長期強化学習が多種多様な推論領域にまたがる小言語モデルに及ぼす影響について検討する。
我々は,長期的パフォーマンス向上の鍵となる重要な要素として,制御KL正規化,クリッピング率,定期参照ポリシーリセットを導入する。
私たちのモデルは、数学の+14.7%、コーディングの+13.9%、論理パズルの+54.8%など、強力なベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2025-07-16T17:59:24Z) - DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation [68.19756761027351]
拡散大言語モデル(dLLM)は自己回帰(AR)モデルの魅力的な代替品である。
本研究は,それらの認知過程と強化学習手法について考察する。
我々の研究は、dLLM生成のメカニズムについて深い洞察を与え、効果的な拡散ネイティブなRLトレーニングフレームワークを提供します。
論文 参考訳(メタデータ) (2025-06-25T17:35:47Z) - Aha Moment Revisited: Are VLMs Truly Capable of Self Verification in Inference-time Scaling? [19.422376032675572]
我々は,視覚抵抗モデル(VLM)に推論時間的手法が効果的に拡張するか否かを検討する。
多数決や自己検証によるベスト・オブ・N選択といったデコード戦略はVLM推論性能を向上するが、前者のような生成手法は後者のような検証手法に比べて大幅に向上することがわかった。
RL学習されたVLMには、視覚とテキストの両モードで堅牢な自己検証機能がない。
論文 参考訳(メタデータ) (2025-06-20T18:23:48Z) - Towards Effective Code-Integrated Reasoning [89.47213509714578]
モデルが必要に応じてコードを生成するコード統合推論について検討し、コードインタプリタを通じてそれを実行することによってフィードバックを統合する。
ツール強化強化学習は、学習力学における潜在的な不安定さに悩まされる可能性がある。
我々は、探索と安定性のバランスをとるための強化されたトレーニング戦略を開発し、推論性能を改善しながら、ツールの利用能力を徐々に構築する。
論文 参考訳(メタデータ) (2025-05-30T11:30:18Z) - Learning to Reason without External Rewards [100.27210579418562]
RLVR(Reinforcement Learning with Verifiable Rewards)による複雑な推論のための大規模言語モデル(LLM)の訓練は、費用がかかるドメイン固有の監督に依存して効果的であるが制限されている。
内部フィードバックからの強化学習(Reinforcement Learning from Internal Feedback, RLIF)は、LLMが外部の報酬やラベル付きデータなしで本質的な信号から学習できるフレームワークである。
本稿では,モデル自身の信頼度を利用したRLIF手法であるIntuitorについて,その唯一の報奨信号として自己確実性(self-certainty)を提案する。
論文 参考訳(メタデータ) (2025-05-26T07:01:06Z) - Trust, But Verify: A Self-Verification Approach to Reinforcement Learning with Verifiable Rewards [67.86091419220816]
大規模言語モデル(LLM)は複雑な推論において非常に有望である。
一般的な問題は表面的な自己回帰であり、モデルが自身の出力をしっかりと検証できない。
本稿では、RISE(Reinforce Reasoning with Self-Verification)という新しいオンラインRLフレームワークについて紹介する。
論文 参考訳(メタデータ) (2025-05-19T17:59:31Z) - Effective and Transparent RAG: Adaptive-Reward Reinforcement Learning for Decision Traceability [16.87554947089102]
本稿では,強化学習(RL)を用いて学習した透過的なRAG生成フレームワークであるARENAを提案する。
構造化された生成と適応的な報酬計算に基づいて、我々のRLベースのトレーニングにより、重要な証拠を特定し、構造化された推論を行い、解釈可能な決定トレースで回答を生成することができる。
論文 参考訳(メタデータ) (2025-05-19T15:40:29Z) - Rethinking RL Scaling for Vision Language Models: A Transparent, From-Scratch Framework and Comprehensive Evaluation Scheme [36.34443944082215]
本研究は、視覚モデル(VLM)における強化学習(RL)のための透明でゼロスクラッチなフレームワークを導入する。
複数のモデルとデータセットにまたがって検証される、最小限の機能を備えた4ステップパイプラインを提供する。
さらに、トレーニング力学と反射行動を評価するために、標準化された評価手法を提案する。
論文 参考訳(メタデータ) (2025-04-03T13:53:28Z) - Crossing the Reward Bridge: Expanding RL with Verifiable Rewards Across Diverse Domains [92.36624674516553]
検証可能な報酬付き強化学習(RLVR)は、大規模言語モデル(LLM)の数学的推論と符号化性能の向上に成功している。
本稿では,医学,化学,心理学,経済学,教育など,さまざまな現実世界領域におけるRLVRの有効性と拡張性について検討する。
我々は,2値検証による制限を克服するために,ソフトなモデルに基づく報酬信号を生成する生成的スコアリング手法を利用する。
論文 参考訳(メタデータ) (2025-03-31T08:22:49Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
生成検索は、検索を自己回帰生成タスクとして再構成し、大きな言語モデルがクエリから直接ターゲット文書を生成する。
生成的検索におけるトレーニングと推論のスケーリング法則を体系的に検討し,モデルのサイズ,トレーニングデータスケール,推論時間計算が協調的に性能に与える影響について検討した。
論文 参考訳(メタデータ) (2025-03-24T17:59:03Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
本研究では,類似の推論機能を大規模視覚言語モデル(LVLM)にうまく組み込むことができるか検討する。
本稿では,教師付き微調整(SFT)と強化学習(RL)を反復的に活用し,モデル一般化をさらに改善する手法を検討する。
OpenVLThinkerは、MathVista、MathVerse、MathVisionといった挑戦的なベンチマークで一貫して改善された推論性能を示すLVLMである。
論文 参考訳(メタデータ) (2025-03-21T17:52:43Z) - Process Supervision-Guided Policy Optimization for Code Generation [15.943210767010045]
単体テストフィードバックによる強化学習(RL)は、大規模言語モデルのLLM(LLM)コード生成を強化したが、完全なコード評価後にのみ提供されるスパース報酬に依存している。
本稿では,人間のコード修正を模倣したプロセス・リワード・モデル(PRM)を提案する。
論文 参考訳(メタデータ) (2024-10-23T07:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。