論文の概要: Computational Attestations of Polynomial Integrity Towards Verifiable Machine-Learning
- arxiv url: http://arxiv.org/abs/2506.11458v1
- Date: Fri, 13 Jun 2025 04:28:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.656913
- Title: Computational Attestations of Polynomial Integrity Towards Verifiable Machine-Learning
- Title(参考訳): 検証可能な機械学習に向けた多項式積分の計算的検証
- Authors: Dustin Ray, Caroline El Jazmi,
- Abstract要約: 我々は,1台のマシン上で5万サンプルのデータセットに対して,線形回帰の正しいトレーニングを6分以内で行うことを証明した。
この結果は、このサイズのデータセットよりも証明可能なDPの文献で知られている最速の事例である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine-learning systems continue to advance at a rapid pace, demonstrating remarkable utility in various fields and disciplines. As these systems continue to grow in size and complexity, a nascent industry is emerging which aims to bring machine-learning-as-a-service (MLaaS) to market. Outsourcing the operation and training of these systems to powerful hardware carries numerous advantages, but challenges arise when privacy and the correctness of work carried out must be ensured. Recent advancements in the field of zero-knowledge cryptography have led to a means of generating arguments of integrity for any computation, which in turn can be efficiently verified by any party, in any place, at any time. In this work we prove the correct training of a differentially-private (DP) linear regression over a dataset of 50,000 samples on a single machine in less than 6 minutes, verifying the entire computation in 0.17 seconds. To our knowledge, this result represents the fastest known instance in the literature of provable-DP over a dataset of this size. We believe this result constitutes a key stepping-stone towards end-to-end private MLaaS.
- Abstract(参考訳): 機械学習システムは急速に進歩し続け、様々な分野や分野において顕著な有用性を示している。
これらのシステムがサイズと複雑さを増し続けていくにつれ、機械学習・アズ・ア・サービス(MLaaS)を市場に持ち込もうとする新興産業が生まれつつある。
これらのシステムの動作とトレーニングを強力なハードウェアにアウトソーシングすることは、多くの利点をもたらすが、プライバシーと作業の正しさを保証する必要がある。
ゼロ知識暗号の分野の最近の進歩は、任意の計算に対して整合性の議論を発生させる手段となり、任意の場所において、任意の当事者によって効率的に検証できる。
本研究では,1台のマシン上で5万サンプルのデータセットを6分以内で差分プライベート(DP)線形回帰を正確にトレーニングし,計算全体を0.17秒で検証する。
我々の知る限り、この結果は、このサイズのデータセットよりも証明可能なDPの文献で知られている最速の事例である。
この結果が、エンドツーエンドのプライベートMLaaSへの重要な一歩だと信じています。
関連論文リスト
- Does Machine Unlearning Truly Remove Model Knowledge? A Framework for Auditing Unlearning in LLMs [58.24692529185971]
本研究では,3つのベンチマークデータセット,6つのアンラーニングアルゴリズム,および5つのプロンプトベースの監査手法からなる,アンラーニング評価のための総合的な監査フレームワークを提案する。
異なるアンラーニング戦略の有効性とロバスト性を評価する。
論文 参考訳(メタデータ) (2025-05-29T09:19:07Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
ニューラルネットワークから特定のデータサンプルの影響を除去する新しい学習機構を提案する。
この目的を達成するために、我々は、ターゲットモデルの重みやアクティベーション値からプライバシーに敏感な情報を排除するための、新しい損失関数を構築した。
本研究の結果は,未学習の有効性とレイテンシ,および主課題の忠実度の観点から,我々のアプローチの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-07-01T00:20:26Z) - Robust Machine Learning by Transforming and Augmenting Imperfect
Training Data [6.928276018602774]
この論文は、現代の機械学習のいくつかのデータ感度を探求する。
まず、トレーニングデータで測定された事前の人間の識別をMLが符号化するのを防ぐ方法について論じる。
次に、トレーニング中に予測忠実度を提供するが、デプロイ時に信頼性が低い突発的特徴を含むデータから学習する問題について論じる。
論文 参考訳(メタデータ) (2023-12-19T20:49:28Z) - Privacy Side Channels in Machine Learning Systems [87.53240071195168]
プライバシサイドチャネルは、システムレベルのコンポーネントを利用してプライベート情報を抽出する攻撃である。
例えば、差分プライベートなトレーニングを適用する前にトレーニングデータを重複させることで、保証可能なプライバシ保証を完全に無効にするサイドチャネルが生成されることを示す。
さらに,学習データセットに含まれる秘密鍵を抽出するために,言語モデルを学習データ再生からブロックするシステムを利用することを示す。
論文 参考訳(メタデータ) (2023-09-11T16:49:05Z) - Hyperdimensional Computing as a Rescue for Efficient Privacy-Preserving
Machine Learning-as-a-Service [9.773163665697057]
ホモモルフィック暗号化(HE)はこの逆問題に対処するための有望な手法である。
HEを使用すると、サービスプロバイダは、暗号化されたデータをクエリとして取り、それを復号することなくモデルを実行することができる。
我々は、超次元コンピューティングが、暗号化データによるプライバシー保護機械学習の救いになることを示した。
論文 参考訳(メタデータ) (2023-08-17T00:25:17Z) - Integration of Domain Expert-Centric Ontology Design into the CRISP-DM for Cyber-Physical Production Systems [45.05372822216111]
機械学習(ML)とデータマイニング(DM)の手法は、収集されたデータから複雑で隠れたパターンを抽出する上で有望であることが証明されている。
しかし、このようなデータ駆動プロジェクトは、通常、CRISPDM(Cross-Industry Standard Process for Data Mining)で実行され、データの理解と準備に要する時間の不均等さのために失敗することが多い。
このコントリビューションは、データサイエンティストがCPPSの課題に対してより迅速かつ確実に洞察を得ることができるように、統合されたアプローチを提供することを目的としている。
論文 参考訳(メタデータ) (2023-07-21T15:04:00Z) - Machine Learning for QoS Prediction in Vehicular Communication:
Challenges and Solution Approaches [46.52224306624461]
最大スループット予測の強化,例えばストリーミングや高精細マッピングアプリケーションについて検討する。
収集したデータの基盤となる特性をよりよく理解することで、マシンラーニング技術上に信頼性を構築することができるかを強調します。
我々は、説明可能なAIを使用して、機械学習が明示的にプログラムされることなく、無線ネットワークの基本原理を学習できることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:29:20Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
主に、ワイヤレスデバイス間の協調トレーニングに焦点を合わせます。
過去数十年間、多くの分散最適化アルゴリズムが開発されてきた。
データ局所性 – すなわち、各参加デバイスで利用可能なデータがローカルのままである間、共同モデルを協調的にトレーニングすることができる。
論文 参考訳(メタデータ) (2021-12-07T20:15:39Z) - Fully Homomorphically Encrypted Deep Learning as a Service [4.082216579462797]
FHE(Fully Homomorphic Encryption)は、プライバシ保護技術分野における比較的最近の進歩である。
このプロジェクトは、ディープラーニングを用いたFHEが、比較的低時間の複雑さで、大規模にどのように使用できるかを調査し、導出し、証明する。
我々は、これがデータプライバシの将来に与える影響と、アグリフードサプライチェーン内のさまざまなアクター間でのデータ共有を可能にする方法について論じる。
論文 参考訳(メタデータ) (2021-07-26T20:17:48Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。