論文の概要: Task-Driven Discrete Representation Learning
- arxiv url: http://arxiv.org/abs/2506.11511v1
- Date: Fri, 13 Jun 2025 07:12:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.685492
- Title: Task-Driven Discrete Representation Learning
- Title(参考訳): タスク駆動型離散表現学習
- Authors: Tung-Long Vuong,
- Abstract要約: 本稿では,下流タスクに関連する個別機能の有用性を探求する統合フレームワークを提案する。
我々は、表現能力とサンプルの複雑さの間のトレードオフを理論的に分析する。
- 参考スコア(独自算出の注目度): 1.604511025616605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, deep discrete representation learning (DRL) has achieved significant success across various domains. Most DRL frameworks (e.g., the widely used VQ-VAE and its variants) have primarily focused on generative settings, where the quality of a representation is implicitly gauged by the fidelity of its generation. In fact, the goodness of a discrete representation remain ambiguously defined across the literature. In this work, we adopt a practical approach that examines DRL from a task-driven perspective. We propose a unified framework that explores the usefulness of discrete features in relation to downstream tasks, with generation naturally viewed as one possible application. In this context, the properties of discrete representations as well as the way they benefit certain tasks are also relatively understudied. We therefore provide an additional theoretical analysis of the trade-off between representational capacity and sample complexity, shedding light on how discrete representation utilization impacts task performance. Finally, we demonstrate the flexibility and effectiveness of our framework across diverse applications.
- Abstract(参考訳): 近年、深層離散表現学習 (DRL) は様々な領域で大きな成功を収めている。
ほとんどのDRLフレームワーク(例えば、広く使われているVQ-VAEとその変種)は、主に生成的設定に焦点を当てており、表現の質はその生成の忠実さによって暗黙的に測定されている。
事実、離散表現の良さは文学全体で曖昧に定義されている。
本研究では,DRLをタスク駆動の観点から検討する実践的アプローチを採用する。
本稿では、下流タスクに関連する個別機能の有用性を探求する統合フレームワークを提案する。
この文脈では、離散表現の性質とそれらが特定のタスクに利益をもたらす方法も相対的に検討されている。
そこで我々は,表現能力とサンプルの複雑さのトレードオフを理論的に分析し,個別表現利用がタスク性能に与える影響について光を当てる。
最後に、さまざまなアプリケーションにまたがるフレームワークの柔軟性と有効性を示します。
関連論文リスト
- Crossing the Reward Bridge: Expanding RL with Verifiable Rewards Across Diverse Domains [92.36624674516553]
検証可能な報酬付き強化学習(RLVR)は、大規模言語モデル(LLM)の数学的推論と符号化性能の向上に成功している。
本稿では,医学,化学,心理学,経済学,教育など,さまざまな現実世界領域におけるRLVRの有効性と拡張性について検討する。
我々は,2値検証による制限を克服するために,ソフトなモデルに基づく報酬信号を生成する生成的スコアリング手法を利用する。
論文 参考訳(メタデータ) (2025-03-31T08:22:49Z) - Harnessing Discrete Representations For Continual Reinforcement Learning [8.61539229796467]
強化学習の文脈における分類的価値のベクトルとして観測を表現することの利点について検討する。
従来の連続表現と比較すると、離散表現よりも学習した世界モデルは、キャパシティの少ない世界のより正確なモデルであることが分かる。
論文 参考訳(メタデータ) (2023-12-02T18:55:26Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
我々は,最大スパース基底予測器が不整合表現をもたらす条件を提供する新しい識別可能性の結果を証明した。
この理論的な結果から,両レベル最適化問題に基づくアンタングル表現学習の実践的アプローチを提案する。
論文 参考訳(メタデータ) (2022-11-26T21:02:09Z) - Learning Task-relevant Representations for Generalization via
Characteristic Functions of Reward Sequence Distributions [63.773813221460614]
同じタスクで異なる環境にまたがる一般化は、視覚的強化学習の成功に不可欠である。
本稿では,タスク関連情報を抽出する手法として,特徴逆列予測(CRESP)を提案する。
実験により、CRESPは目に見えない環境での一般化性能を大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-05-20T14:52:03Z) - Non-Stationary Representation Learning in Sequential Linear Bandits [22.16801879707937]
非定常環境におけるマルチタスク意思決定のための表現学習について検討する。
本研究では,非定常表現を適応的に学習し,伝達することにより,効率的な意思決定を容易にするオンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-13T06:13:03Z) - A Free Lunch from the Noise: Provable and Practical Exploration for
Representation Learning [55.048010996144036]
ある雑音仮定の下では、対応するマルコフ遷移作用素の線型スペクトル特性を自由な閉形式で得られることを示す。
本稿では,スペクトルダイナミクス埋め込み(SPEDE)を提案する。これはトレードオフを破り,雑音の構造を利用して表現学習のための楽観的な探索を完遂する。
論文 参考訳(メタデータ) (2021-11-22T19:24:57Z) - Reinforcement Learning with Prototypical Representations [114.35801511501639]
Proto-RLは、プロトタイプ表現を通じて表現学習と探索を結び付ける自己監督型フレームワークである。
これらのプロトタイプは、エージェントの探索経験の要約と同時に、観察を表す基盤としても機能する。
これにより、困難な連続制御タスクのセットで最新の下流ポリシー学習が可能になります。
論文 参考訳(メタデータ) (2021-02-22T18:56:34Z) - Deep Partial Multi-View Learning [94.39367390062831]
クロスパーシャル・マルチビュー・ネットワーク(CPM-Nets)と呼ばれる新しいフレームワークを提案する。
我々はまず、多視点表現に対する完全性と汎用性の形式的な定義を提供する。
そして、理論的に学習された潜在表現の多元性を証明する。
論文 参考訳(メタデータ) (2020-11-12T02:29:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。