論文の概要: Brewing Knowledge in Context: Distillation Perspectives on In-Context Learning
- arxiv url: http://arxiv.org/abs/2506.11516v1
- Date: Fri, 13 Jun 2025 07:17:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.688365
- Title: Brewing Knowledge in Context: Distillation Perspectives on In-Context Learning
- Title(参考訳): 文脈における知識の育成 : 文脈内学習における蒸留的視点
- Authors: Chengye Li, Haiyun Liu, Yuanxi Li,
- Abstract要約: In-context Learning (ICL) は、大きな言語モデルでウェイトアップなしで新しいタスクを解くことができる。
実証的な成功にもかかわらず、ICLのメカニズムはいまだに理解されていない。
本稿では,ICLを知識蒸留の暗黙の形式として解釈する新たな理論的視点を提案する。
- 参考スコア(独自算出の注目度): 2.6129523822281415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-context learning (ICL) allows large language models (LLMs) to solve novel tasks without weight updates. Despite its empirical success, the mechanism behind ICL remains poorly understood, limiting our ability to interpret, improve, and reliably apply it. In this paper, we propose a new theoretical perspective that interprets ICL as an implicit form of knowledge distillation (KD), where prompt demonstrations guide the model to form a task-specific reference model during inference. Under this view, we derive a Rademacher complexity-based generalization bound and prove that the bias of the distilled weights grows linearly with the Maximum Mean Discrepancy (MMD) between the prompt and target distributions. This theoretical framework explains several empirical phenomena and unifies prior gradient-based and distributional analyses. To the best of our knowledge, this is the first to formalize inference-time attention as a distillation process, which provides theoretical insights for future prompt engineering and automated demonstration selection.
- Abstract(参考訳): In-context Learning (ICL) は、大型言語モデル(LLM)が重み更新なしで新しいタスクを解くことを可能にする。
実証的な成功にもかかわらず、ICLの背後にあるメカニズムはよく理解されておらず、解釈し、改善し、確実に適用する能力が制限されている。
本稿では,ICLを知識蒸留(KD)の暗黙的な形式として解釈する新たな理論的視点を提案する。
この考え方では、Radecherの複雑性に基づく一般化境界を導出し、蒸留した重量の偏りが、プロンプト分布とターゲット分布の間の最大平均差(MMD)とともに線形に大きくなることを証明している。
この理論の枠組みはいくつかの経験的現象を説明し、事前勾配と分布解析を統一する。
我々の知る限りでは、これは蒸留プロセスとして推論時間の注意を形式化し、将来の急進的なエンジニアリングと自動実証選択のための理論的洞察を提供する最初のものである。
関連論文リスト
- Large Language Models as Computable Approximations to Solomonoff Induction [11.811838796672369]
我々は,大規模言語モデル (LLM) とアルゴリズム情報理論 (AIT) の間の最初の公式な接続を確立する。
我々はAITを活用し、文脈内学習、少数ショット学習、スケーリング法則の統一的な理論的説明を提供する。
我々の枠組みは理論的基礎と実践的LLM行動のギャップを埋め、将来のモデル開発に説明力と実用的な洞察を提供する。
論文 参考訳(メタデータ) (2025-05-21T17:35:08Z) - Model Steering: Learning with a Reference Model Improves Generalization Bounds and Scaling Laws [52.10468229008941]
本稿では,戦略データの選択や重み付けを通じて,対象モデルのトレーニングを指導・強化するための基準として,訓練モデルを用いた新たな学習パラダイムを定式化する。
提案手法は,参照モデルを持たないトレーニングと比較して,一般化とデータの効率性を改善する理由に関する理論的知見を提供する。
これらの知見に基づいて,DRRho-CLIPと呼ばれる参照モデルを用いたコントラスト言語-画像事前学習手法を提案する。
論文 参考訳(メタデータ) (2025-05-10T16:55:03Z) - Honey, I Shrunk the Language Model: Impact of Knowledge Distillation Methods on Performance and Explainability [3.224880576815583]
大規模言語モデルの高い計算とストレージ要求は、リソース制約のある環境への展開を制限する。
これまでの研究では, 学習データの生成と学生モデルの訓練のための蒸留法がいくつか導入されている。
その関連性にも拘わらず, 現状蒸留法がモデル性能および説明可能性に与える影響については, 十分に検討されていない。
論文 参考訳(メタデータ) (2025-04-22T17:32:48Z) - Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [86.21199607040147]
自己改善認知(Self-Improving cognition、SIcog)は、次世代基礎言語モデルを構築するための自己学習フレームワークである。
ステップバイステップの視覚的理解手法であるChain-of-Descriptionを導入し、構造化連鎖推論(CoT)を統合し、深いマルチモーダル推論をサポートする。
広範囲にわたる実験により、SIcogはマルチモーダル認知を著しく改善した次世代基盤MLLMを生産することが示された。
論文 参考訳(メタデータ) (2025-03-16T00:25:13Z) - Understanding Masked Autoencoders via Hierarchical Latent Variable
Models [109.35382136147349]
Masked Autoencoder (MAE) は近年,様々な視覚タスクにおいて顕著な成功を収めている。
MAEに関する興味深い経験的観察の出現にもかかわらず、理論的に原理化された理解はいまだに欠如している。
論文 参考訳(メタデータ) (2023-06-08T03:00:10Z) - Knowledge Distillation Performs Partial Variance Reduction [93.6365393721122]
知識蒸留は'学生'モデルの性能を高めるための一般的な手法である。
知識蒸留(KD)の背後にある力学は、まだ完全には理解されていない。
我々は,KDを新しいタイプの分散還元機構として解釈できることを示す。
論文 参考訳(メタデータ) (2023-05-27T21:25:55Z) - A Theory of Emergent In-Context Learning as Implicit Structure Induction [8.17811111226145]
大きな言語モデルをスケールすると、実例からコンテキスト内で学習する能力が創発的になる。
文脈内学習は、自然言語データにみられる合成操作の組換えに依拠していると論じる。
入力の合成構造の表現によって、文脈内学習がどうサポートされるかを示す。
論文 参考訳(メタデータ) (2023-03-14T15:24:05Z) - Task-Free Continual Learning via Online Discrepancy Distance Learning [11.540150938141034]
本稿では,来訪したサンプルとモデルトレーニングに利用可能な情報全体との差分距離に基づく一般化境界を提供する,新しい理論解析フレームワークを開発する。
この理論モデルに着想を得て,混合モデルに対する動的成分展開機構,すなわちオンライン離散距離学習(ODDL)によって実現された新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-10-12T20:44:09Z) - Understanding Interpretability by generalized distillation in Supervised
Classification [3.5473853445215897]
最近の解釈戦略は、複雑な機械学習モデルの根底にある決定メカニズムの人間の理解に焦点を当てている。
本稿では,他のMLモデルと相対的に定義される解釈・蒸留式を提案する。
MNIST、Fashion-MNIST、Stanford40データセットに関する提案フレームワークの評価を行った。
論文 参考訳(メタデータ) (2020-12-05T17:42:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。