Configurable Preference Tuning with Rubric-Guided Synthetic Data
- URL: http://arxiv.org/abs/2506.11702v1
- Date: Fri, 13 Jun 2025 12:17:38 GMT
- Title: Configurable Preference Tuning with Rubric-Guided Synthetic Data
- Authors: VĂctor Gallego,
- Abstract summary: This paper introduces a novel framework for endowing language models with the ability to adjust their behavior based on explicit, human-interpretable directives.<n>Several experimental artifacts, such as training code, generated datasets and fine-tuned models are released at https://github.com/vicgalle/configurable-preference-tuning.
- Score: 0.6526824510982799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Models of human feedback for AI alignment, such as those underpinning Direct Preference Optimization (DPO), often bake in a singular, static set of preferences, limiting adaptability. This paper challenges the assumption of monolithic preferences by introducing Configurable Preference Tuning (CPT), a novel framework for endowing language models with the ability to dynamically adjust their behavior based on explicit, human-interpretable directives. CPT leverages synthetically generated preference data, conditioned on system prompts derived from structured, fine-grained rubrics that define desired attributes like writing style. By fine-tuning with these rubric-guided preferences, the LLM learns to modulate its outputs at inference time in response to the system prompt, without retraining. This approach not only offers fine-grained control but also provides a mechanism for modeling more nuanced and context-dependent human feedback. Several experimental artifacts, such as training code, generated datasets and fine-tuned models are released at https://github.com/vicgalle/configurable-preference-tuning
Related papers
- PITA: Preference-Guided Inference-Time Alignment for LLM Post-Training [9.093854840532062]
PITA is a novel framework that integrates preference feedback directly into the LLM's token generation.<n> PITA learns a small preference-based guidance policy to modify token probabilities at inference time without fine-tuning.<n>We evaluate PITA across diverse tasks, including mathematical reasoning and sentiment classification.
arXiv Detail & Related papers (2025-07-26T21:46:32Z) - Multi-Preference Lambda-weighted Listwise DPO for Small-Scale Model Alignment [5.276657230880984]
Large language models (LLMs) demonstrate strong generalization across a wide range of language tasks, but often generate outputs that misalign with human preferences.<n>Direct Optimization Preference (DPO) simplifies the process by treating alignment as a classification task over binary preference pairs.<n>We propose Multi-Preference Lambda-weighted Listwise DPO, which allows the model to learn from more detailed human feedback.<n>Our method consistently outperforms standard DPO on alignment while enabling efficient, controllable, and fine-grained adaptation suitable for real-world deployment.
arXiv Detail & Related papers (2025-06-24T16:47:17Z) - RankPO: Preference Optimization for Job-Talent Matching [7.385902340910447]
We propose a two-stage training framework for large language models (LLMs)<n>In the first stage, a contrastive learning approach is used to train the model on a dataset constructed from real-world matching rules.<n>In the second stage, we introduce a novel preference-based fine-tuning method inspired by Direct Preference Optimization (DPO) to align the model with AI-curated pairwise preferences.
arXiv Detail & Related papers (2025-03-13T10:14:37Z) - PIPA: Preference Alignment as Prior-Informed Statistical Estimation [57.24096291517857]
We introduce Pior-Informed Preference Alignment (PIPA), a unified, RL-free probabilistic framework.<n> PIPA accommodates both paired and unpaired data, as well as answer and step-level annotations.<n>By integrating different types of prior information, we developed two variations of PIPA: PIPA-M and PIPA-N.
arXiv Detail & Related papers (2025-02-09T04:31:30Z) - Preference Alignment Improves Language Model-Based TTS [76.70693823683091]
preference alignment algorithms adjust LMs to align with the preferences of reward models, enhancing the desirability of the generated content.
With a 1.15B parameter LM-based TTS model, we demonstrate that preference alignment consistently improves intelligibility, speaker similarity, and proxy subjective evaluation scores.
arXiv Detail & Related papers (2024-09-19T01:58:19Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences.
We propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game.
Our approach, dubbed Self-Play Preference Optimization (SPPO), utilizes iterative policy updates to provably approximate the Nash equilibrium.
arXiv Detail & Related papers (2024-05-01T17:59:20Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z) - Linear Alignment: A Closed-form Solution for Aligning Human Preferences without Tuning and Feedback [70.32795295142648]
Linear alignment is a novel algorithm that aligns language models with human preferences in one single inference step.
Experiments on both general and personalized preference datasets demonstrate that linear alignment significantly enhances the performance and efficiency of LLM alignment.
arXiv Detail & Related papers (2024-01-21T10:46:23Z) - Parameter-Efficient Tuning Helps Language Model Alignment [57.27390187540737]
Previous works mainly adopt reinforcement learning (RLHF) and direct preference optimization (DPO) with human feedback for alignment.
Controllable generation offers more flexibility with regard to data format.
Our approach, alignMEnt with parameter-Efficient Tuning (MEET), improves the quality of control tokens.
arXiv Detail & Related papers (2023-10-01T23:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.