Forgetful by Design? A Critical Audit of YouTube's Search API for Academic Research
- URL: http://arxiv.org/abs/2506.11727v2
- Date: Wed, 25 Jun 2025 14:06:24 GMT
- Title: Forgetful by Design? A Critical Audit of YouTube's Search API for Academic Research
- Authors: Bernhard Rieder, Adrian Padilla, Oscar Coromina,
- Abstract summary: This paper critically audits the search endpoint of YouTube's Data API (v3), a common tool for academic research.<n>We identify major limitations regarding completeness, representativeness, consistency, and bias.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper critically audits the search endpoint of YouTube's Data API (v3), a common tool for academic research. Through systematic weekly searches over six months using eleven queries, we identify major limitations regarding completeness, representativeness, consistency, and bias. Our findings reveal substantial differences between ranking parameters like relevance and date in terms of video recall and precision, with relevance often retrieving numerous off-topic videos. We also find severe temporal decay, as the number of findable videos for a specific period dramatically decreases after just 20-60 days from the publication date, potentially hampering many different research designs. Furthermore, search results lack consistency, with identical queries yielding different video sets over time, compromising replicability. A case study on the European Parliament elections highlights how these issues impact research outcomes. While the paper offers several mitigation strategies, it concludes that the API's search function, potentially prioritizing "freshness" over comprehensive retrieval, is not adequate for robust academic research, especially concerning Digital Services Act requirements.
Related papers
- I'm Sorry Dave, I'm Afraid I Can't Return That: On YouTube Search API Use in Research [55.2480439325792]
We analyze the API's behavior by running identical queries across a period of 12 weeks.<n>Our findings suggest that the search endpoint returns highly inconsistent results in ways that are not officially documented.<n>Our results also suggest that the API may prioritize shorter, more popular videos, although the role of channel popularity is not as clear.
arXiv Detail & Related papers (2025-06-04T20:13:42Z) - MultiConIR: Towards multi-condition Information Retrieval [57.6405602406446]
We introduce MultiConIR, the first benchmark designed to evaluate retrieval models in multi-condition scenarios.<n>We propose three tasks to assess retrieval and reranking models on multi-condition robustness, monotonic relevance ranking, and query format sensitivity.
arXiv Detail & Related papers (2025-03-11T05:02:03Z) - MomentSeeker: A Task-Oriented Benchmark For Long-Video Moment Retrieval [61.414236415351446]
We propose MomentSeeker, a novel benchmark for long-video moment retrieval (LMVR)<n>MomentSeeker is created based on long and diverse videos, averaging over 1200 seconds in duration.<n>It covers a variety of real-world scenarios in three levels: global-level, event-level, object-level, covering common tasks like action recognition, object localization, and causal reasoning.
arXiv Detail & Related papers (2025-02-18T05:50:23Z) - A Flexible and Scalable Framework for Video Moment Search [51.47907684209207]
This paper introduces a flexible framework for retrieving a ranked list of moments from collection of videos in any length to match a text query.<n>Our framework, called Segment-Proposal-Ranking (SPR), simplifies the search process into three independent stages: segment retrieval, proposal generation, and moment refinement with re-ranking.<n> Evaluations on the TVR-Ranking dataset demonstrate that our framework achieves state-of-the-art performance with significant reductions in computational cost and processing time.
arXiv Detail & Related papers (2025-01-09T08:54:19Z) - Towards Debiasing Frame Length Bias in Text-Video Retrieval via Causal
Intervention [72.12974259966592]
We present a unique and systematic study of a temporal bias due to frame length discrepancy between training and test sets of trimmed video clips.
We propose a causal debiasing approach and perform extensive experiments and ablation studies on the Epic-Kitchens-100, YouCook2, and MSR-VTT datasets.
arXiv Detail & Related papers (2023-09-17T15:58:27Z) - Zero-shot Audio Topic Reranking using Large Language Models [42.774019015099704]
Multimodal Video Search by Examples (MVSE) investigates using video clips as the query term for information retrieval.
This work aims to compensate for any performance loss from this rapid archive search by examining reranking approaches.
Performance is evaluated for topic-based retrieval on a publicly available video archive, the BBC Rewind corpus.
arXiv Detail & Related papers (2023-09-14T11:13:36Z) - Deep Learning for Video-Text Retrieval: a Review [13.341694455581363]
Video-Text Retrieval (VTR) aims to search for the most relevant video related to the semantics in a given sentence.
In this survey, we review and summarize over 100 research papers related to VTR.
arXiv Detail & Related papers (2023-02-24T10:14:35Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
We explore the feasibility of approximate exposing query identification (EQI) as a retrieval task by reversing the role of queries and documents in two classes of search systems.
We derive an evaluation metric to measure the quality of a ranking of exposing queries, as well as conducting an empirical analysis focusing on various practical aspects of approximate EQI.
arXiv Detail & Related papers (2021-10-14T20:19:27Z) - A Systematic Review of Automated Query Reformulations in Source Code
Search [12.234169944475537]
We select 70 studies on query reformulations from 2,970 candidate studies.
We discuss the best practices and future opportunities to advance the state of research in search query reformulations.
arXiv Detail & Related papers (2021-08-22T05:47:10Z) - Uncovering Hidden Challenges in Query-Based Video Moment Retrieval [29.90001703587512]
We present a series of experiments assessing how well the benchmark results reflect the true progress in solving the moment retrieval task.
Our results indicate substantial biases in the popular datasets and unexpected behaviour of the state-of-the-art models.
We suggest possible directions to improve the temporal sentence grounding in the future.
arXiv Detail & Related papers (2020-09-01T10:07:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.