Diffusion-Based Electrocardiography Noise Quantification via Anomaly Detection
- URL: http://arxiv.org/abs/2506.11815v2
- Date: Tue, 22 Jul 2025 06:48:23 GMT
- Title: Diffusion-Based Electrocardiography Noise Quantification via Anomaly Detection
- Authors: Tae-Seong Han, Jae-Wook Heo, Hakseung Kim, Cheol-Hui Lee, Hyub Huh, Eue-Keun Choi, Hye Jin Kim, Dong-Joo Kim,
- Abstract summary: Existing methods for addressing ECG noise, relying on artifact classification or denoising, are constrained by annotation inconsistencies and poor generalizability.<n>We propose a diffusion-based framework trained to model the normative distribution of clean ECG signals, identifying deviations as noise without requiring explicit artifact labels.
- Score: 2.741077302469742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrocardiography (ECG) signals are frequently degraded by noise, limiting their clinical reliability in both conventional and wearable settings. Existing methods for addressing ECG noise, relying on artifact classification or denoising, are constrained by annotation inconsistencies and poor generalizability. Here, we address these limitations by reframing ECG noise quantification as an anomaly detection task. We propose a diffusion-based framework trained to model the normative distribution of clean ECG signals, identifying deviations as noise without requiring explicit artifact labels. To robustly evaluate performance and mitigate label inconsistencies, we introduce a distribution-based metric using the Wasserstein-1 distance ($W_1$). Our model achieved a macro-average $W_1$ score of 1.308, outperforming the next-best method by over 48\%. External validation confirmed strong generalizability, facilitating the exclusion of noisy segments to improve diagnostic accuracy and support timely clinical intervention. This approach enhances real-time ECG monitoring and broadens ECG applicability in digital health technologies.
Related papers
- NMCSE: Noise-Robust Multi-Modal Coupling Signal Estimation Method via Optimal Transport for Cardiovascular Disease Detection [7.255170888607717]
We propose Noise-Robust Multi-Modal Coupling Signal Estimation (NMCSE), which reformulates the problem as distribution matching via optimal transport theory.<n>Our approach achieves 97.38% accuracy and 0.98 AUC in CVD detection, outperforming state-of-the-art methods and demonstrating robust performance for real-world clinical applications.
arXiv Detail & Related papers (2025-05-14T18:25:43Z) - FADE: Forecasting for Anomaly Detection on ECG [4.914228925573227]
The objective of this work is to propose a deep learning system, FADE, designed for normal ECG forecasting and anomaly detection.<n>FADE has been trained in a self-supervised manner with a novel morphological inspired loss function.<n>Using a novel distance function to compare forecasted ECG signals with actual sensor data, our method effectively identifies cardiac anomalies.
arXiv Detail & Related papers (2025-02-11T09:19:39Z) - MECG-E: Mamba-based ECG Enhancer for Baseline Wander Removal [23.040957989796155]
We propose a novel ECG denoising model, namely Mamba-based ECG Enhancer (MECG-E)
MECG-E surpasses several well-known existing models across multiple metrics under different noise conditions.
It requires less inference time than state-of-the-art diffusion-based ECG denoisers.
arXiv Detail & Related papers (2024-09-27T15:22:44Z) - Unsupervised Anomaly Detection Using Diffusion Trend Analysis for Display Inspection [48.19821513256158]
We propose a method to detect anomalies by analysis of reconstruction trend depending on the degree of degradation.<n>In this paper, we propose a method to detect anomalies by analysis of reconstruction trend depending on the degree of degradation.
arXiv Detail & Related papers (2024-07-12T01:50:07Z) - SQUWA: Signal Quality Aware DNN Architecture for Enhanced Accuracy in Atrial Fibrillation Detection from Noisy PPG Signals [37.788535094404644]
Atrial fibrillation (AF) significantly increases the risk of stroke, heart disease, and mortality.
Photoplethysmography ( PPG) signals are susceptible to corruption from motion artifacts and other factors often encountered in ambulatory settings.
We propose a novel deep learning model, designed to learn how to retain accurate predictions from partially corrupted PPG.
arXiv Detail & Related papers (2024-04-15T01:07:08Z) - SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
This paper considers label-level noise in image sensory anomaly detection for the first time.
We propose a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level.
Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset.
arXiv Detail & Related papers (2024-03-21T08:49:34Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Automatic Detection of Noisy Electrocardiogram Signals without Explicit
Noise Labels [12.176026483486252]
We present a two-stage deep learning-based framework to automatically detect noisy ECG samples.
We observe that the framework can detect slightly and highly noisy ECG samples effectively.
We also study the transfer of the model learned on one dataset to another dataset and observe that the framework effectively detects noisy ECG samples.
arXiv Detail & Related papers (2022-08-08T17:16:16Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - DeScoD-ECG: Deep Score-Based Diffusion Model for ECG Baseline Wander and
Noise Removal [4.998493052085877]
Electrocardiogram (ECG) signals commonly suffer noise interference, such as baseline wander.
This paper proposes a novel ECG baseline wander and noise removal technology.
arXiv Detail & Related papers (2022-07-31T23:39:33Z) - High Frequency EEG Artifact Detection with Uncertainty via Early Exit
Paradigm [70.50499513259322]
Current artifact detection pipelines are resource-hungry and rely heavily on hand-crafted features.
We propose E4G, a deep learning framework for high frequency EEG artifact detection.
Our framework exploits the early exit paradigm, building an implicit ensemble of models capable of capturing uncertainty.
arXiv Detail & Related papers (2021-07-21T07:05:42Z) - Inter-Beat Interval Estimation with Tiramisu Model: A Novel Approach
with Reduced Error [29.672313172019624]
We propose a deep-learning approach to suppress motion-artifact noise and make the R-peaks of the ECG signal prominent even in the presence of high-intensity motion.
Our method enables IBI estimation from noisy ECG signals with SNR up to -30dB with average root mean square error (RMSE) of 13 milliseconds for estimated IBIs.
arXiv Detail & Related papers (2021-07-01T18:39:43Z) - Heart Sound Classification Considering Additive Noise and Convolutional
Distortion [2.63046959939306]
Automatic analysis of heart sounds for abnormality detection is faced with the challenges of additive noise and sensor-dependent degradation.
This paper aims to develop methods to address the cardiac abnormality detection problem when both types of distortions are present in the cardiac auscultation sound.
The proposed method paves the way towards developing computer-aided cardiac auscultation systems in noisy environments using low-cost stethoscopes.
arXiv Detail & Related papers (2021-06-03T14:09:04Z) - Improving Medical Image Classification with Label Noise Using
Dual-uncertainty Estimation [72.0276067144762]
We discuss and define the two common types of label noise in medical images.
We propose an uncertainty estimation-based framework to handle these two label noise amid the medical image classification task.
arXiv Detail & Related papers (2021-02-28T14:56:45Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Bulbar ALS Detection Based on Analysis of Voice Perturbation and Vibrato [68.97335984455059]
The purpose of this work was to verify the sutability of the sustain vowel phonation test for automatic detection of patients with ALS.
We proposed enhanced procedure for separation of voice signal into fundamental periods that requires for calculation of measurements.
arXiv Detail & Related papers (2020-03-24T12:49:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.