VisEval: A Benchmark for Data Visualization in the Era of Large Language Models
- URL: http://arxiv.org/abs/2407.00981v2
- Date: Wed, 7 Aug 2024 09:52:44 GMT
- Title: VisEval: A Benchmark for Data Visualization in the Era of Large Language Models
- Authors: Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, Yuqing Yang,
- Abstract summary: Recent advancements in pre-trained large language models (LLMs) are opening new avenues for generating visualizations from natural language.
In this paper, we propose a new NL2VIS benchmark called VisEval.
This dataset includes 2,524 representative queries covering 146 databases, paired with accurately labeled ground truths.
- Score: 12.077276008688065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Translating natural language to visualization (NL2VIS) has shown great promise for visual data analysis, but it remains a challenging task that requires multiple low-level implementations, such as natural language processing and visualization design. Recent advancements in pre-trained large language models (LLMs) are opening new avenues for generating visualizations from natural language. However, the lack of a comprehensive and reliable benchmark hinders our understanding of LLMs' capabilities in visualization generation. In this paper, we address this gap by proposing a new NL2VIS benchmark called VisEval. Firstly, we introduce a high-quality and large-scale dataset. This dataset includes 2,524 representative queries covering 146 databases, paired with accurately labeled ground truths. Secondly, we advocate for a comprehensive automated evaluation methodology covering multiple dimensions, including validity, legality, and readability. By systematically scanning for potential issues with a number of heterogeneous checkers, VisEval provides reliable and trustworthy evaluation outcomes. We run VisEval on a series of state-of-the-art LLMs. Our evaluation reveals prevalent challenges and delivers essential insights for future advancements.
Related papers
- VHELM: A Holistic Evaluation of Vision Language Models [75.88987277686914]
We present the Holistic Evaluation of Vision Language Models (VHELM)
VHELM aggregates various datasets to cover one or more of the 9 aspects: visual perception, knowledge, reasoning, bias, fairness, multilinguality, robustness, toxicity, and safety.
Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast.
arXiv Detail & Related papers (2024-10-09T17:46:34Z) - FineCops-Ref: A new Dataset and Task for Fine-Grained Compositional Referring Expression Comprehension [10.482908189805872]
Referring Expression (REC) is a crucial cross-modal task that objectively evaluates the capabilities of language understanding, image comprehension, and language-to-image grounding.
We have established a new REC dataset characterized by two key features.
It includes negative text and images created through fine-grained editing and generation based on existing data.
arXiv Detail & Related papers (2024-09-23T06:56:51Z) - PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation [2.1184929769291294]
This paper presents a novel synthetic dataset designed to evaluate the proficiency of large language models in interpreting data visualizations.
Our dataset is generated using controlled parameters to ensure comprehensive coverage of potential real-world scenarios.
We employ multimodal text prompts with questions related to visual data in images to benchmark several state-of-the-art models.
arXiv Detail & Related papers (2024-09-04T11:19:17Z) - Are Large Vision Language Models up to the Challenge of Chart Comprehension and Reasoning? An Extensive Investigation into the Capabilities and Limitations of LVLMs [11.19928977117624]
Natural language is a powerful complementary modality of communication for data visualizations, such as bar and line charts.
Various downstream tasks have been introduced recently such as chart question answering, chart summarization, and fact-checking with charts.
These tasks pose a unique challenge, demanding both vision-language reasoning and a nuanced understanding of chart data tables, visual encodings, and natural language prompts.
This paper presents the first comprehensive evaluation of the recently developed large vision language models (LVLMs) for chart understanding and reasoning tasks.
arXiv Detail & Related papers (2024-06-01T01:43:30Z) - Automated Data Visualization from Natural Language via Large Language Models: An Exploratory Study [41.84915013818794]
The Natural Language to Visualization (NL2Vis) task aims to transform natural-language descriptions into visual representations for a grounded table.
Many deep learning-based approaches have been developed for NL2Vis, but challenges persist in visualizing data sourced from unseen databases or spanning multiple tables.
Taking inspiration from the remarkable generation capabilities of Large Language Models (LLMs), this paper conducts an empirical study to evaluate their potential in generating visualizations.
arXiv Detail & Related papers (2024-04-26T03:25:35Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented
Visual Models [102.63817106363597]
We build ELEVATER, the first benchmark to compare and evaluate pre-trained language-augmented visual models.
It consists of 20 image classification datasets and 35 object detection datasets, each of which is augmented with external knowledge.
We will release our toolkit and evaluation platforms for the research community.
arXiv Detail & Related papers (2022-04-19T10:23:42Z) - e-ViL: A Dataset and Benchmark for Natural Language Explanations in
Vision-Language Tasks [52.918087305406296]
We introduce e-ViL, a benchmark for evaluate explainable vision-language tasks.
We also introduce e-SNLI-VE, the largest existing dataset with NLEs.
We propose a new model that combines UNITER, which learns joint embeddings of images and text, and GPT-2, a pre-trained language model.
arXiv Detail & Related papers (2021-05-08T18:46:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.