DiMoSR: Feature Modulation via Multi-Branch Dilated Convolutions for Efficient Image Super-Resolution
- URL: http://arxiv.org/abs/2505.21262v1
- Date: Tue, 27 May 2025 14:40:05 GMT
- Title: DiMoSR: Feature Modulation via Multi-Branch Dilated Convolutions for Efficient Image Super-Resolution
- Authors: M. Akin Yilmaz, Ahmet Bilican, A. Murat Tekalp,
- Abstract summary: This paper introduces DiMoSR, a novel architecture that enhances feature representation through modulation to complement attention in lightweight SISR networks.<n> Experimental results demonstrate that DiMoSR outperforms state-of-the-art lightweight methods across diverse benchmark datasets.
- Score: 7.714092783675679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Balancing reconstruction quality versus model efficiency remains a critical challenge in lightweight single image super-resolution (SISR). Despite the prevalence of attention mechanisms in recent state-of-the-art SISR approaches that primarily emphasize or suppress feature maps, alternative architectural paradigms warrant further exploration. This paper introduces DiMoSR (Dilated Modulation Super-Resolution), a novel architecture that enhances feature representation through modulation to complement attention in lightweight SISR networks. The proposed approach leverages multi-branch dilated convolutions to capture rich contextual information over a wider receptive field while maintaining computational efficiency. Experimental results demonstrate that DiMoSR outperforms state-of-the-art lightweight methods across diverse benchmark datasets, achieving superior PSNR and SSIM metrics with comparable or reduced computational complexity. Through comprehensive ablation studies, this work not only validates the effectiveness of DiMoSR but also provides critical insights into the interplay between attention mechanisms and feature modulation to guide future research in efficient network design. The code and model weights to reproduce our results are available at: https://github.com/makinyilmaz/DiMoSR
Related papers
- Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution [88.20464308588889]
We propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR.<n>This method is designed through unfolding an SR optimization function constrained by structural similarity.<n>Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption.
arXiv Detail & Related papers (2025-06-13T14:29:40Z) - Efficient Single Image Super-Resolution with Entropy Attention and Receptive Field Augmentation [34.50541063621832]
We present an efficient single image super-resolution (SISR) model composed of a novel entropy attention (EA) and a shifting large kernel attention (SLKA)
EA increases the entropy of intermediate features conditioned on a Gaussian distribution, providing more informative input for subsequent reasoning.
SLKA extends the receptive field of SR models with the assistance of channel shifting, which also favors to boost the diversity of hierarchical features.
arXiv Detail & Related papers (2024-08-08T02:03:10Z) - DVMSR: Distillated Vision Mamba for Efficient Super-Resolution [7.551130027327461]
We propose DVMSR, a novel lightweight Image SR network that incorporates Vision Mamba and a distillation strategy.
Our proposed DVMSR can outperform state-of-the-art efficient SR methods in terms of model parameters.
arXiv Detail & Related papers (2024-05-05T17:34:38Z) - Multi-Depth Branch Network for Efficient Image Super-Resolution [12.042706918188566]
A longstanding challenge in Super-Resolution (SR) is how to efficiently enhance high-frequency details in Low-Resolution (LR) images.
We propose an asymmetric SR architecture featuring Multi-Depth Branch Module (MDBM)
MDBMs contain branches of different depths, designed to capture high- and low-frequency information simultaneously and efficiently.
arXiv Detail & Related papers (2023-09-29T15:46:25Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - Implicit Diffusion Models for Continuous Super-Resolution [65.45848137914592]
This paper introduces an Implicit Diffusion Model (IDM) for high-fidelity continuous image super-resolution.
IDM integrates an implicit neural representation and a denoising diffusion model in a unified end-to-end framework.
The scaling factor regulates the resolution and accordingly modulates the proportion of the LR information and generated features in the final output.
arXiv Detail & Related papers (2023-03-29T07:02:20Z) - Learning Detail-Structure Alternative Optimization for Blind
Super-Resolution [69.11604249813304]
We propose an effective and kernel-free network, namely DSSR, which enables recurrent detail-structure alternative optimization without blur kernel prior incorporation for blind SR.
In our DSSR, a detail-structure modulation module (DSMM) is built to exploit the interaction and collaboration of image details and structures.
Our method achieves the state-of-the-art against existing methods.
arXiv Detail & Related papers (2022-12-03T14:44:17Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
We present and advocate an explainable approach toward SISR named model-guided deep unfolding network (MoG-DUN)
MoG-DUN is accurate (producing fewer aliasing artifacts), computationally efficient (with reduced model parameters), and versatile (capable of handling multiple degradations)
The superiority of the proposed MoG-DUN method to existing state-of-theart image methods including RCAN, SRDNF, and SRFBN is substantiated by extensive experiments on several popular datasets and various degradation scenarios.
arXiv Detail & Related papers (2020-09-14T08:23:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.