Scalable Generalized Bayesian Online Neural Network Training for Sequential Decision Making
- URL: http://arxiv.org/abs/2506.11898v1
- Date: Fri, 13 Jun 2025 15:44:14 GMT
- Title: Scalable Generalized Bayesian Online Neural Network Training for Sequential Decision Making
- Authors: Gerardo Duran-Martin, Leandro Sánchez-Betancourt, Álvaro Cartea, Kevin Murphy,
- Abstract summary: We introduce scalable algorithms for online learning and generalized Bayesian inference of neural network parameters.<n>Our methods update all network parameters online, with no need for replay buffers or offline retraining.
- Score: 4.2994653504704194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce scalable algorithms for online learning and generalized Bayesian inference of neural network parameters, designed for sequential decision making tasks. Our methods combine the strengths of frequentist and Bayesian filtering, which include fast low-rank updates via a block-diagonal approximation of the parameter error covariance, and a well-defined posterior predictive distribution that we use for decision making. More precisely, our main method updates a low-rank error covariance for the hidden layers parameters, and a full-rank error covariance for the final layer parameters. Although this characterizes an improper posterior, we show that the resulting posterior predictive distribution is well-defined. Our methods update all network parameters online, with no need for replay buffers or offline retraining. We show, empirically, that our methods achieve a competitive tradeoff between speed and accuracy on (non-stationary) contextual bandit problems and Bayesian optimization problems.
Related papers
- BAPE: Learning an Explicit Bayes Classifier for Long-tailed Visual Recognition [78.70453964041718]
Current deep learning algorithms usually solve for the optimal classifier by emphimplicitly estimating the posterior probabilities.<n>This simple methodology has been proven effective for meticulously balanced academic benchmark datasets.<n>However, it is not applicable to the long-tailed data distributions in the real world.<n>This paper presents a novel approach (BAPE) that provides a more precise theoretical estimation of the data distributions.
arXiv Detail & Related papers (2025-06-29T15:12:50Z) - Variational Bayesian Bow tie Neural Networks with Shrinkage [0.276240219662896]
We build a relaxed version of the standard feed-forward rectified neural network.
We employ Polya-Gamma data augmentation tricks to render a conditionally linear and Gaussian model.
We derive a variational inference algorithm that avoids distributional assumptions and independence across layers.
arXiv Detail & Related papers (2024-11-17T17:36:30Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
Uncertainty quantification is an important task in machine learning.
We present a reformulation of the log-marginal likelihood of a NN with BLL which allows for efficient training using backpropagation.
arXiv Detail & Related papers (2023-02-21T20:23:56Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
We consider distributed optimization methods for problems where forming the Hessian is computationally challenging.
We leverage randomized sketches for reducing the problem dimensions as well as preserving privacy and improving straggler resilience in asynchronous distributed systems.
arXiv Detail & Related papers (2022-03-18T05:49:13Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Bayesian Nested Neural Networks for Uncertainty Calibration and Adaptive
Compression [40.35734017517066]
Nested networks or slimmable networks are neural networks whose architectures can be adjusted instantly during testing time.
Recent studies have focused on a "nested dropout" layer, which is able to order the nodes of a layer by importance during training.
arXiv Detail & Related papers (2021-01-27T12:34:58Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.