Self-Regulating Cars: Automating Traffic Control in Free Flow Road Networks
- URL: http://arxiv.org/abs/2506.11973v1
- Date: Fri, 13 Jun 2025 17:31:23 GMT
- Title: Self-Regulating Cars: Automating Traffic Control in Free Flow Road Networks
- Authors: Ankit Bhardwaj, Rohail Asim, Sachin Chauhan, Yasir Zaki, Lakshminarayanan Subramanian,
- Abstract summary: We introduce self-regulating cars, a reinforcement learning-based traffic control protocol that dynamically modulates vehicle speeds to optimize throughput and prevent congestion.<n>Our approach integrates classical traffic flow theory, gap acceptance models, and microscopic simulation into a physics-informed RL framework.<n>It also achieves smoother, congestion-resistant flow while generalizing across varied traffic patterns, demonstrating its potential for scalable, ML-driven traffic management.
- Score: 5.557442038265024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Free-flow road networks, such as suburban highways, are increasingly experiencing traffic congestion due to growing commuter inflow and limited infrastructure. Traditional control mechanisms, such as traffic signals or local heuristics, are ineffective or infeasible in these high-speed, signal-free environments. We introduce self-regulating cars, a reinforcement learning-based traffic control protocol that dynamically modulates vehicle speeds to optimize throughput and prevent congestion, without requiring new physical infrastructure. Our approach integrates classical traffic flow theory, gap acceptance models, and microscopic simulation into a physics-informed RL framework. By abstracting roads into super-segments, the agent captures emergent flow dynamics and learns robust speed modulation policies from instantaneous traffic observations. Evaluated in the high-fidelity PTV Vissim simulator on a real-world highway network, our method improves total throughput by 5%, reduces average delay by 13%, and decreases total stops by 3% compared to the no-control setting. It also achieves smoother, congestion-resistant flow while generalizing across varied traffic patterns, demonstrating its potential for scalable, ML-driven traffic management.
Related papers
- Origin-Destination Pattern Effects on Large-Scale Mixed Traffic Control via Multi-Agent Reinforcement Learning [1.7273380623090846]
Large-scale mixed traffic control, involving both human-driven and robotic vehicles, remains underexplored.<n>We propose a decentralized multi-agent reinforcement learning framework for managing large-scale mixed traffic networks.<n>We evaluate our approach on a real-world network of 14 intersections in Colorado Springs, Colorado, USA.
arXiv Detail & Related papers (2025-05-19T01:36:05Z) - Decentralized Traffic Flow Optimization Through Intrinsic Motivation [4.3012765978447565]
Traffic congestion has long been an ubiquitous problem that is exacerbating with the rapid growth of megacities.<n>In this proof-of-concept work we study intrinsic motivation, implemented via the empowerment principle, to control autonomous car behavior to improve traffic flow.<n>This proposed model significantly improves overall traffic flow, mitigates congestion, and reduces the average traffic jam time.
arXiv Detail & Related papers (2025-05-08T18:28:04Z) - AIoT-based smart traffic management system [0.0]
This paper presents a novel AI-based smart traffic management system de-signed to optimize traffic flow and reduce congestion in urban environments.<n>By analysing live footage from existing CCTV cameras, this approach eliminates the need for additional hardware.<n>The AI model processes live video feeds to accurately count vehicles and assess traffic density, allowing for adaptive signal control.
arXiv Detail & Related papers (2025-02-04T11:38:42Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
This paper explores the use of Reinforcement Learning to enhance traffic signal operations at intersections.
We introduce two RL-based algorithms: a turn-based agent, which dynamically prioritizes traffic signals based on real-time queue lengths, and a time-based agent, which adjusts signal phase durations according to traffic conditions.
Simulation results demonstrate that both RL algorithms significantly outperform conventional traffic signal control systems.
arXiv Detail & Related papers (2024-08-28T12:35:56Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Traffic Smoothing Controllers for Autonomous Vehicles Using Deep
Reinforcement Learning and Real-World Trajectory Data [45.13152172664334]
We design traffic-smoothing cruise controllers that can be deployed onto autonomous vehicles.
We leverage real-world trajectory data from the I-24 highway in Tennessee.
We show that at a low 4% autonomous vehicle penetration rate, we achieve significant fuel savings of over 15% on trajectories exhibiting many stop-and-go waves.
arXiv Detail & Related papers (2024-01-18T00:50:41Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning [30.00761722505295]
We propose a novel approach to optimize traffic flow at intersections in mixed traffic situations using deep reinforcement learning.
Our reinforcement learning agent learns a policy for a centralized controller to let connected autonomous vehicles at unsignalized intersections give up their right of way and yield to other vehicles to optimize traffic flow.
arXiv Detail & Related papers (2021-06-11T13:16:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.