Interpretable representation learning of quantum data enabled by probabilistic variational autoencoders
- URL: http://arxiv.org/abs/2506.11982v2
- Date: Wed, 18 Jun 2025 14:06:33 GMT
- Title: Interpretable representation learning of quantum data enabled by probabilistic variational autoencoders
- Authors: Paulin de Schoulepnikoff, Gorka Muñoz-Gil, Hendrik Poulsen Nautrup, Hans J. Briegel,
- Abstract summary: variational autoencoders (VAEs) have shown promise in extracting the hidden physical features of some input data.<n>VAEs must account for its intrinsic randomness and complex correlations when dealing with quantum data.<n>Here, we demonstrate that two key modifications enable VAEs to learn physically meaningful latent representations.
- Score: 0.5999777817331317
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Interpretable machine learning is rapidly becoming a crucial tool for scientific discovery. Among existing approaches, variational autoencoders (VAEs) have shown promise in extracting the hidden physical features of some input data, with no supervision nor prior knowledge of the system at study. Yet, the ability of VAEs to create meaningful, interpretable representations relies on their accurate approximation of the underlying probability distribution of their input. When dealing with quantum data, VAEs must hence account for its intrinsic randomness and complex correlations. While VAEs have been previously applied to quantum data, they have often neglected its probabilistic nature, hindering the extraction of meaningful physical descriptors. Here, we demonstrate that two key modifications enable VAEs to learn physically meaningful latent representations: a decoder capable of faithfully reproduce quantum states and a probabilistic loss tailored to this task. Using benchmark quantum spin models, we identify regimes where standard methods fail while the representations learned by our approach remain meaningful and interpretable. Applied to experimental data from Rydberg atom arrays, the model autonomously uncovers the phase structure without access to prior labels, Hamiltonian details, or knowledge of relevant order parameters, highlighting its potential as an unsupervised and interpretable tool for the study of quantum systems.
Related papers
- I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data? [76.15163242945813]
Large language models (LLMs) have led many to conclude that they exhibit a form of intelligence.<n>We introduce a novel generative model that generates tokens on the basis of human-interpretable concepts represented as latent discrete variables.
arXiv Detail & Related papers (2025-03-12T01:21:17Z) - $ζ$-QVAE: A Quantum Variational Autoencoder utilizing Regularized Mixed-state Latent Representations [1.0687104237121408]
A major challenge in quantum computing is its application to large real-world datasets due to scarce quantum hardware resources.<n>We present a fully quantum framework, $zeta$-QVAE, which encompasses all the capabilities of classical VAEs.<n>Our results indicate that $zeta$-QVAE learns representations that better utilize the capacity of the latent space.
arXiv Detail & Related papers (2024-02-27T18:37:01Z) - Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordances are fundamental descriptors of relationships between actions, objects and effects.
This paper approaches the problem of an embodied agent exploring the world and learning these affordances autonomously from its sensory experiences.
arXiv Detail & Related papers (2024-02-08T22:05:45Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - IB-UQ: Information bottleneck based uncertainty quantification for
neural function regression and neural operator learning [11.5992081385106]
We propose a novel framework for uncertainty quantification via information bottleneck (IB-UQ) for scientific machine learning tasks.
We incorporate the bottleneck by a confidence-aware encoder, which encodes inputs into latent representations according to the confidence of the input data.
We also propose a data augmentation based information bottleneck objective which can enhance the quality of the extrapolation uncertainty.
arXiv Detail & Related papers (2023-02-07T05:56:42Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Unsupervised Interpretable Learning of Phases From Many-Qubit Systems [2.4352963290061993]
We show how an unsupervised machine-learning technique can be used to understand short-range entangled many-qubit systems.
Our work opens the door for a first-principles application of hybrid algorithms that aim at strong interpretability without supervision.
arXiv Detail & Related papers (2022-08-18T14:35:28Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Generative Quantum Machine Learning [0.0]
The aim of this thesis is to develop new generative quantum machine learning algorithms.
We introduce a quantum generative adversarial network and a quantum Boltzmann machine implementation, both of which can be realized with parameterized quantum circuits.
arXiv Detail & Related papers (2021-11-24T19:00:21Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Tree tensor network classifiers for machine learning: from
quantum-inspired to quantum-assisted [0.0]
We describe a quantum-assisted machine learning (QAML) method in which multivariate data is encoded into quantum states in a Hilbert space whose dimension is exponentially large in the length of the data vector.
We present an approach that can be implemented on gate-based quantum computing devices.
arXiv Detail & Related papers (2021-04-06T02:31:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.