crossMoDA Challenge: Evolution of Cross-Modality Domain Adaptation Techniques for Vestibular Schwannoma and Cochlea Segmentation from 2021 to 2023
- URL: http://arxiv.org/abs/2506.12006v3
- Date: Thu, 24 Jul 2025 14:51:39 GMT
- Title: crossMoDA Challenge: Evolution of Cross-Modality Domain Adaptation Techniques for Vestibular Schwannoma and Cochlea Segmentation from 2021 to 2023
- Authors: Navodini Wijethilake, Reuben Dorent, Marina Ivory, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Mohamed Okasha, Anna Oviedova, Hexin Dong, Bogyeong Kang, Guillaume Sallé, Luyi Han, Ziyuan Zhao, Han Liu, Yubo Fan, Tao Yang, Shahad Hardan, Hussain Alasmawi, Santosh Sanjeev, Yuzhou Zhuang, Satoshi Kondo, Maria Baldeon Calisto, Shaikh Muhammad Uzair Noman, Cancan Chen, Ipek Oguz, Rongguo Zhang, Mina Rezaei, Susana K. Lai-Yuen, Satoshi Kasai, Yunzhi Huang, Chih-Cheng Hung, Mohammad Yaqub, Lisheng Wang, Benoit M. Dawant, Cuntai Guan, Ritse Mann, Vincent Jaouen, Tae-Eui Kam, Li Zhang, Jonathan Shapey, Tom Vercauteren,
- Abstract summary: We report the findings of the 2022 and 2023 editions of the cross-Modality Domain Adaptation (crossMoDA) challenge series.<n>The winning approach of the 2023 edition reduced the number of outliers on the 2021 and 2022 testing data.<n>While progress is still needed for clinically acceptable VS segmentation, the plateauing performance suggests that a more challenging cross-modal task may better serve future benchmarking.
- Score: 20.87321022049113
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The cross-Modality Domain Adaptation (crossMoDA) challenge series, initiated in 2021 in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), focuses on unsupervised cross-modality segmentation, learning from contrast-enhanced T1 (ceT1) and transferring to T2 MRI. The task is an extreme example of domain shift chosen to serve as a meaningful and illustrative benchmark. From a clinical application perspective, it aims to automate Vestibular Schwannoma (VS) and cochlea segmentation on T2 scans for more cost-effective VS management. Over time, the challenge objectives have evolved to enhance its clinical relevance. The challenge evolved from using single-institutional data and basic segmentation in 2021 to incorporating multi-institutional data and Koos grading in 2022, and by 2023, it included heterogeneous routine data and sub-segmentation of intra- and extra-meatal tumour components. In this work, we report the findings of the 2022 and 2023 editions and perform a retrospective analysis of the challenge progression over the years. The observations from the successive challenge contributions indicate that the number of outliers decreases with an expanding dataset. This is notable since the diversity of scanning protocols of the datasets concurrently increased. The winning approach of the 2023 edition reduced the number of outliers on the 2021 and 2022 testing data, demonstrating how increased data heterogeneity can enhance segmentation performance even on homogeneous data. However, the cochlea Dice score declined in 2023, likely due to the added complexity from tumour sub-annotations affecting overall segmentation performance. While progress is still needed for clinically acceptable VS segmentation, the plateauing performance suggests that a more challenging cross-modal task may better serve future benchmarking.
Related papers
- ReCoSeg++:Extended Residual-Guided Cross-Modal Diffusion for Brain Tumor Segmentation [0.9374652839580183]
We propose a semi-supervised, two-stage framework that extends the ReCoSeg approach to the larger and more heterogeneous BraTS 2021 dataset.<n>In the first stage, a residual-guided denoising diffusion probabilistic model (DDPM) performs cross-modal synthesis by reconstructing the T1ce modality from FLAIR, T1, and T2 scans.<n>In the second stage, a lightweight U-Net takes as input the concatenation of residual maps, computed as the difference between real T1ce and synthesized T1ce, with T1, T2, and FLAIR modalities to improve whole tumor segmentation
arXiv Detail & Related papers (2025-08-01T20:24:31Z) - CXR-LT 2024: A MICCAI challenge on long-tailed, multi-label, and zero-shot disease classification from chest X-ray [64.2434525370243]
The CXR-LT series is a community-driven initiative designed to enhance lung disease classification using chest X-rays.<n>The CXR-LT 2024 expands the dataset to 377,110 chest X-rays (CXRs) and 45 disease labels, including 19 new rare disease findings.<n>This paper provides an overview of CXR-LT 2024, detailing the data curation process and consolidating state-of-the-art solutions.
arXiv Detail & Related papers (2025-06-09T17:53:31Z) - HWA-UNETR: Hierarchical Window Aggregate UNETR for 3D Multimodal Gastric Lesion Segmentation [11.180283823428711]
HWA-UNETR is a novel 3D segmentation framework that employs an original HWA block with learnable window aggregation layers.<n>Our framework surpasses existing methods by up to 1.68% in the Dice score while maintaining solid robustness.
arXiv Detail & Related papers (2025-05-15T16:18:00Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.<n>This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - The MuSe 2024 Multimodal Sentiment Analysis Challenge: Social Perception and Humor Recognition [64.5207572897806]
The Multimodal Sentiment Analysis Challenge (MuSe) 2024 addresses two contemporary multimodal affect and sentiment analysis problems.
In the Social Perception Sub-Challenge (MuSe-Perception), participants will predict 16 different social attributes of individuals.
The Cross-Cultural Humor Detection Sub-Challenge (MuSe-Humor) dataset expands upon the Passau Spontaneous Football Coach Humor dataset.
arXiv Detail & Related papers (2024-06-11T22:26:20Z) - The KiTS21 Challenge: Automatic segmentation of kidneys, renal tumors,
and renal cysts in corticomedullary-phase CT [50.41526598153698]
This paper presents the challenge report for the 2021 Kidney and Kidney Tumor Challenge (KiTS21)
KiTS21 is a sequel to its first edition in 2019, and it features a variety of innovations in how the challenge was designed.
The top-performing teams achieved a significant improvement over the state of the art set in 2019, and this performance is shown to inch ever closer to human-level performance.
arXiv Detail & Related papers (2023-07-05T02:00:14Z) - CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation
techniques for Vestibular Schwnannoma and Cochlea Segmentation [43.372468317829004]
Domain Adaptation (DA) has recently raised strong interests in the medical imaging community.
To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised.
CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality DA.
arXiv Detail & Related papers (2022-01-08T14:00:34Z) - The Federated Tumor Segmentation (FeTS) Challenge [4.694856527778264]
This manuscript describes the first challenge on Federated Learning, namely the Federated Tumor (FeTS) challenge 2021.
The FeTS 2021 challenge uses clinically acquired, multi-institutional magnetic resonance imaging (MRI) scans from the BraTS 2020 challenge, as well as from various remote independent institutions.
The goals of the FeTS challenge are directly represented by the two included tasks: 1) the identification of the optimal weight aggregation approach towards the training of a consensus model, and 2) the evaluation of the generalizability of brain tumor segmentation models "in the wild"
arXiv Detail & Related papers (2021-05-12T18:00:20Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
We propose the first fully-automated solution to segment the whole fetal head in US volumes.
The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture.
We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features.
arXiv Detail & Related papers (2020-04-28T14:43:05Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.