Incorporating Kinematic Wave Theory into a Deep Learning Method for
High-Resolution Traffic Speed Estimation
- URL: http://arxiv.org/abs/2102.02906v1
- Date: Thu, 4 Feb 2021 21:51:25 GMT
- Title: Incorporating Kinematic Wave Theory into a Deep Learning Method for
High-Resolution Traffic Speed Estimation
- Authors: Bilal Thonnam Thodi, Zaid Saeed Khan, Saif Eddin Jabari, Monica
Menendez
- Abstract summary: We propose a kinematic wave based Deep Convolutional Neural Network (Deep CNN) to estimate high resolution traffic speed dynamics from sparse probe vehicle trajectories.
We introduce two key approaches that allow us to incorporate kinematic wave theory principles to improve the robustness of existing learning-based estimation methods.
- Score: 3.0969191504482243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a kinematic wave based Deep Convolutional Neural Network (Deep
CNN) to estimate high resolution traffic speed dynamics from sparse probe
vehicle trajectories. To that end, we introduce two key approaches that allow
us to incorporate kinematic wave theory principles to improve the robustness of
existing learning-based estimation methods. First, we use an anisotropic
traffic-based kernel for the CNN. This kernel is designed to explicitly take
forward and backward traffic wave propagation characteristics into account
during reconstruction in the space-time domain. Second, we use simulated data
for training the CNN. This implicitly imposes physical constraints on the
patterns learned by the CNN, providing an alternate, unrestricted way to
integrate complex traffic behaviors into learning models. We present the speed
fields estimated using the anisotropic kernel and highlight its advantages over
its isotropic counterpart in terms of predicting shockwave dynamics.
Furthermore, we test the transferability of the trained model to real traffic
by using two datasets: the Next Generation Simulation (NGSIM) program and the
Highway Drone (HighD) dataset. Finally, we present an ensemble version of the
CNN that allows us to handle multiple (and unknown) probe vehicle penetration
rates. The results demonstrate that anisotropic kernels can reduce model
complexity while improving the correctness of the estimation, and that
simulation-based training is a viable alternative to model fitting using
real-world data. This suggests that exploiting prior traffic knowledge adds
value to learning-based estimation methods, and that there is great potential
in exploring broader approaches to do so.
Related papers
- A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - How to Learn and Generalize From Three Minutes of Data:
Physics-Constrained and Uncertainty-Aware Neural Stochastic Differential
Equations [24.278738290287293]
We present a framework and algorithms to learn controlled dynamics models using neural differential equations (SDEs)
We construct the drift term to leverage a priori physics knowledge as inductive bias, and we design the diffusion term to represent a distance-aware estimate of the uncertainty in the learned model's predictions.
We demonstrate these capabilities through experiments on simulated robotic systems, as well as by using them to model and control a hexacopter's flight dynamics.
arXiv Detail & Related papers (2023-06-10T02:33:34Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Low-Rank Hankel Tensor Completion for Traffic Speed Estimation [7.346671461427793]
We propose a purely data-driven and model-free solution to the traffic state estimation problem.
By imposing a low-rank assumption on this tensor structure, we can approximate characterize both global patterns and the unknown complex local dynamics.
We conduct numerical experiments on both synthetic simulation data and real-world high-resolution data, and our results demonstrate the effectiveness and superiority of the proposed model.
arXiv Detail & Related papers (2021-05-21T00:08:06Z) - Fast Modeling and Understanding Fluid Dynamics Systems with
Encoder-Decoder Networks [0.0]
We show that an accurate deep-learning-based proxy model can be taught efficiently by a finite-volume-based simulator.
Compared to traditional simulation, the proposed deep learning approach enables much faster forward computation.
We quantify the sensitivity of the deep learning model to key physical parameters and hence demonstrate that the inversion problems can be solved with great acceleration.
arXiv Detail & Related papers (2020-06-09T17:14:08Z) - Traffic Data Imputation using Deep Convolutional Neural Networks [2.7647400328727256]
We show that a well trained neural network can learn traffic speed dynamics from time-space diagrams.
Our results show that with vehicle penetration probe levels as low as 5%, the proposed estimation method can provide a sound reconstruction of macroscopic traffic speeds.
arXiv Detail & Related papers (2020-01-21T12:52:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.