Efficient Parallel Training Methods for Spiking Neural Networks with Constant Time Complexity
- URL: http://arxiv.org/abs/2506.12087v1
- Date: Tue, 10 Jun 2025 13:27:27 GMT
- Title: Efficient Parallel Training Methods for Spiking Neural Networks with Constant Time Complexity
- Authors: Wanjin Feng, Xingyu Gao, Wenqian Du, Hailong Shi, Peilin Zhao, Pengcheng Wu, Chunyan Miao,
- Abstract summary: Spiking Neural Networks (SNNs) often suffer from high time complexity $O(T)$ due to the sequential processing of $T$ spikes.<n>We propose a novel Fixed-point Parallel Training (FPT) method to accelerate SNN training without modifying the network architecture.
- Score: 63.56009745101597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking Neural Networks (SNNs) often suffer from high time complexity $O(T)$ due to the sequential processing of $T$ spikes, making training computationally expensive. In this paper, we propose a novel Fixed-point Parallel Training (FPT) method to accelerate SNN training without modifying the network architecture or introducing additional assumptions. FPT reduces the time complexity to $O(K)$, where $K$ is a small constant (usually $K=3$), by using a fixed-point iteration form of Leaky Integrate-and-Fire (LIF) neurons for all $T$ timesteps. We provide a theoretical convergence analysis of FPT and demonstrate that existing parallel spiking neurons can be viewed as special cases of our proposed method. Experimental results show that FPT effectively simulates the dynamics of original LIF neurons, significantly reducing computational time without sacrificing accuracy. This makes FPT a scalable and efficient solution for real-world applications, particularly for long-term tasks. Our code will be released at \href{https://github.com/WanjinVon/FPT}{\texttt{https://github.com/WanjinVon/FPT}}.
Related papers
- $\ exttt{SPECS}$: Faster Test-Time Scaling through Speculative Drafts [55.231201692232894]
$textttSPECS$ is a latency-aware test-time scaling method inspired by speculative decoding.<n>Our results show that $textttSPECS$matches or surpasses beam search accuracy while reducing latency by up to $sim$19.1%.
arXiv Detail & Related papers (2025-06-15T05:50:05Z) - Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
Decentralized server (DFL) eliminates reliance on client-client architecture.<n>Non-smooth regularization is often incorporated into machine learning tasks.<n>We propose a novel novel DNCFL algorithm to solve these problems.
arXiv Detail & Related papers (2025-04-17T08:32:25Z) - PRF: Parallel Resonate and Fire Neuron for Long Sequence Learning in Spiking Neural Networks [6.545474731089018]
We address the efficiency and performance challenges of long sequence learning in Spiking Neural Networks (SNNs) simultaneously.
First, we propose a decoupled reset method for parallel spiking neuron training, reducing the typical Leaky Integrate-and-Fire (LIF) model's training time from $O(L2)$ to $O(Llog L)$.
Secondly, to capture long-range dependencies, we propose a Parallel Resonate and Fire (PRF) neuron, which leverages an oscillating membrane potential driven by a resonate mechanism from a differentiable reset function in the complex domain
arXiv Detail & Related papers (2024-10-04T15:51:56Z) - High-Performance Temporal Reversible Spiking Neural Networks with $O(L)$ Training Memory and $O(1)$ Inference Cost [32.44622524827913]
Spiking Neural Networks (SNNs) boost memory requirements during training and increase inference energy cost.
This work proposes a novel Temporal Reversible architecture for SNNs (T-RevSNN) to jointly address the training and inference challenges.
T-RevSNN achieves excellent accuracy on ImageNet, while the memory efficiency, training time acceleration, and inference energy efficiency can be significantly improved.
arXiv Detail & Related papers (2024-05-26T07:26:56Z) - TCNCA: Temporal Convolution Network with Chunked Attention for Scalable
Sequence Processing [52.64837396100988]
MEGA is a recent transformer-based architecture, which utilizes a linear recurrent operator whose parallel computation, based on the FFT, scales as $O(LlogL)$, with $L$ being the sequence length.
We build upon their approach by replacing the linear recurrence with a special temporal convolutional network which permits larger receptive field size with shallower networks, and reduces the computational complexity to $O(L)$.
We evaluate TCNCA on EnWik8 language modeling, long-range-arena (LRA) sequence classification, as well as a synthetic reasoning benchmark associative recall.
arXiv Detail & Related papers (2023-12-09T16:12:25Z) - On the Convergence of Federated Averaging under Partial Participation for Over-parameterized Neural Networks [13.2844023993979]
Federated learning (FL) is a widely employed distributed paradigm for collaboratively machine learning models from multiple clients without sharing local data.
In this paper, we show that FedAvg converges to a global minimum at a global rate at a global focus.
arXiv Detail & Related papers (2023-10-09T07:56:56Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
We build on intuition that neural operator learning inherently induces an approximation error.
We show that our approach reduces GPU memory usage by up to 50% and improves throughput by 58% with little or no reduction in accuracy.
arXiv Detail & Related papers (2023-07-27T17:42:06Z) - Does Continual Learning Equally Forget All Parameters? [55.431048995662714]
Distribution shift (e.g., task or domain shift) in continual learning (CL) usually results in catastrophic forgetting of neural networks.
We study which modules in neural networks are more prone to forgetting by investigating their training dynamics during CL.
We propose a more efficient and simpler method that entirely removes the every-step replay and replaces them by only $k$-times of FPF periodically triggered during CL.
arXiv Detail & Related papers (2023-04-09T04:36:24Z) - Training Overparametrized Neural Networks in Sublinear Time [14.918404733024332]
Deep learning comes at a tremendous computational and energy cost.
We present a new and a subset of binary neural networks, as a small subset of search trees, where each corresponds to a subset of search trees (Ds)
We believe this view would have further applications in analysis analysis of deep networks (Ds)
arXiv Detail & Related papers (2022-08-09T02:29:42Z) - A Communication-Efficient Distributed Gradient Clipping Algorithm for
Training Deep Neural Networks [11.461878019780597]
Gradient Descent might converge slowly in some deep neural networks.
It remains mysterious whether gradient clipping scheme can take advantage of multiple machines to enjoy parallel speedup.
arXiv Detail & Related papers (2022-05-10T16:55:33Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - FreeTickets: Accurate, Robust and Efficient Deep Ensemble by Training
with Dynamic Sparsity [74.58777701536668]
We introduce the FreeTickets concept, which can boost the performance of sparse convolutional neural networks over their dense network equivalents by a large margin.
We propose two novel efficient ensemble methods with dynamic sparsity, which yield in one shot many diverse and accurate tickets "for free" during the sparse training process.
arXiv Detail & Related papers (2021-06-28T10:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.