UCD: Unlearning in LLMs via Contrastive Decoding
- URL: http://arxiv.org/abs/2506.12097v1
- Date: Thu, 12 Jun 2025 16:02:26 GMT
- Title: UCD: Unlearning in LLMs via Contrastive Decoding
- Authors: Vinith M. Suriyakumar, Ayush Sekhari, Ashia Wilson,
- Abstract summary: We propose an inference-time unlearning algorithm that uses contrastive decoding.<n>We evaluate our approach on two unlearning benchmarks, TOFU and MUSE.
- Score: 10.901118996654171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning aims to remove specific information, e.g. sensitive or undesirable content, from large language models (LLMs) while preserving overall performance. We propose an inference-time unlearning algorithm that uses contrastive decoding, leveraging two auxiliary smaller models, one trained without the forget set and one trained with it, to guide the outputs of the original model using their difference during inference. Our strategy substantially improves the tradeoff between unlearning effectiveness and model utility. We evaluate our approach on two unlearning benchmarks, TOFU and MUSE. Results show notable gains in both forget quality and retained performance in comparison to prior approaches, suggesting that incorporating contrastive decoding can offer an efficient, practical avenue for unlearning concepts in large-scale models.
Related papers
- WSS-CL: Weight Saliency Soft-Guided Contrastive Learning for Efficient Machine Unlearning Image Classification [0.0]
We introduce a new two-phase efficient machine unlearning method for image classification, in terms of weight saliency.<n>Our method is called weight saliency soft-guided contrastive learning for efficient machine unlearning image classification (WSS-CL)<n>Our proposed method yields much-improved unlearning efficacy with negligible performance loss compared to state-of-the-art approaches.
arXiv Detail & Related papers (2025-08-06T10:47:36Z) - Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - EpiCoDe: Boosting Model Performance Beyond Training with Extrapolation and Contrastive Decoding [50.29046178980637]
EpiCoDe is a method that boosts model performance in data-scarcity scenarios without extra training.<n>We show that EpiCoDe consistently outperforms existing methods with significant and robust improvement.
arXiv Detail & Related papers (2025-06-04T02:11:54Z) - SAUCE: Selective Concept Unlearning in Vision-Language Models with Sparse Autoencoders [16.551943721248108]
We introduce SAUCE, a novel method for fine-grained and selective concept unlearning in vision-language models.<n>It first trains SAEs to capture high-dimensional, semantically rich sparse features.<n>It then identifies the features most relevant to the target concept for unlearning.<n>During inference, it selectively modifies these features to suppress specific concepts while preserving unrelated information.
arXiv Detail & Related papers (2025-03-16T17:32:23Z) - Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.<n>We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - LLMs-as-Instructors: Learning from Errors Toward Automating Model Improvement [93.38736019287224]
"LLMs-as-Instructors" framework autonomously enhances the training of smaller target models.
Inspired by the theory of "Learning from Errors", this framework employs an instructor LLM to meticulously analyze the specific errors within a target model.
Within this framework, we implement two strategies: "Learning from Error," which focuses solely on incorrect responses to tailor training data, and "Learning from Error by Contrast", which uses contrastive learning to analyze both correct and incorrect responses for a deeper understanding of errors.
arXiv Detail & Related papers (2024-06-29T17:16:04Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.