WSS-CL: Weight Saliency Soft-Guided Contrastive Learning for Efficient Machine Unlearning Image Classification
- URL: http://arxiv.org/abs/2508.04308v1
- Date: Wed, 06 Aug 2025 10:47:36 GMT
- Title: WSS-CL: Weight Saliency Soft-Guided Contrastive Learning for Efficient Machine Unlearning Image Classification
- Authors: Thang Duc Tran, Thai Hoang Le,
- Abstract summary: We introduce a new two-phase efficient machine unlearning method for image classification, in terms of weight saliency.<n>Our method is called weight saliency soft-guided contrastive learning for efficient machine unlearning image classification (WSS-CL)<n>Our proposed method yields much-improved unlearning efficacy with negligible performance loss compared to state-of-the-art approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning, the efficient deletion of the impact of specific data in a trained model, remains a challenging problem. Current machine unlearning approaches that focus primarily on data-centric or weight-based strategies frequently encounter challenges in achieving precise unlearning, maintaining stability, and ensuring applicability across diverse domains. In this work, we introduce a new two-phase efficient machine unlearning method for image classification, in terms of weight saliency, leveraging weight saliency to focus the unlearning process on critical model parameters. Our method is called weight saliency soft-guided contrastive learning for efficient machine unlearning image classification (WSS-CL), which significantly narrows the performance gap with "exact" unlearning. First, the forgetting stage maximizes kullback-leibler divergence between output logits and aggregated pseudo-labels for efficient forgetting in logit space. Next, the adversarial fine-tuning stage introduces contrastive learning in a self-supervised manner. By using scaled feature representations, it maximizes the distance between the forgotten and retained data samples in the feature space, with the forgotten and the paired augmented samples acting as positive pairs, while the retained samples act as negative pairs in the contrastive loss computation. Experimental evaluations reveal that our proposed method yields much-improved unlearning efficacy with negligible performance loss compared to state-of-the-art approaches, indicative of its usability in supervised and self-supervised settings.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - Dissecting Representation Misalignment in Contrastive Learning via Influence Function [15.28417468377201]
We introduce the Extended Influence Function for Contrastive Loss (ECIF), an influence function crafted for contrastive loss.<n>ECIF considers both positive and negative samples and provides a closed-form approximation of contrastive learning models.<n>Building upon ECIF, we develop a series of algorithms for data evaluation, misalignment detection, and misprediction trace-back tasks.
arXiv Detail & Related papers (2024-11-18T15:45:41Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
arXiv Detail & Related papers (2024-04-14T05:02:00Z) - Contrastive Unlearning: A Contrastive Approach to Machine Unlearning [30.38966646250252]
We propose a contrastive unlearning framework, leveraging the concept of representation learning for more effective unlearning.
We show that contrastive unlearning achieves the best unlearning effects and efficiency with the lowest performance loss compared with the state-of-the-art algorithms.
arXiv Detail & Related papers (2024-01-19T02:16:30Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - DUCK: Distance-based Unlearning via Centroid Kinematics [40.2428948628001]
This work introduces a novel unlearning algorithm, denoted as Distance-based Unlearning via Centroid Kinematics (DUCK)
evaluation of the algorithm's performance is conducted across various benchmark datasets.
We also introduce a novel metric, called Adaptive Unlearning Score (AUS), encompassing not only the efficacy of the unlearning process in forgetting target data but also quantifying the performance loss relative to the original model.
arXiv Detail & Related papers (2023-12-04T17:10:25Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Self-aware and Cross-sample Prototypical Learning for Semi-supervised
Medical Image Segmentation [10.18427897663732]
Consistency learning plays a crucial role in semi-supervised medical image segmentation.
It enables the effective utilization of limited annotated data while leveraging the abundance of unannotated data.
We propose a self-aware and cross-sample prototypical learning method ( SCP-Net) to enhance the diversity of prediction in consistency learning.
arXiv Detail & Related papers (2023-05-25T16:22:04Z) - Scale-Equivalent Distillation for Semi-Supervised Object Detection [57.59525453301374]
Recent Semi-Supervised Object Detection (SS-OD) methods are mainly based on self-training, generating hard pseudo-labels by a teacher model on unlabeled data as supervisory signals.
We analyze the challenges these methods meet with the empirical experiment results.
We introduce a novel approach, Scale-Equivalent Distillation (SED), which is a simple yet effective end-to-end knowledge distillation framework robust to large object size variance and class imbalance.
arXiv Detail & Related papers (2022-03-23T07:33:37Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
We present a provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning.
Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch.
ABSGD is flexible enough to combine with other robust losses without any additional cost.
arXiv Detail & Related papers (2020-12-13T03:41:52Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.