"I Hadn't Thought About That": Creators of Human-like AI Weigh in on Ethics And Neurodivergence
- URL: http://arxiv.org/abs/2506.12098v1
- Date: Thu, 12 Jun 2025 17:16:28 GMT
- Title: "I Hadn't Thought About That": Creators of Human-like AI Weigh in on Ethics And Neurodivergence
- Authors: Naba Rizvi, Taggert Smith, Tanvi Vidyala, Mya Bolds, Harper Strickland, Andrew Begel, Rua Williams, Imani Munyaka,
- Abstract summary: Human-like AI agents are becoming increasingly popular, but they present a variety of ethical concerns.<n>We investigate the experiences of the people who build and design these technologies to gain insights into their understanding and acceptance of neurodivergence.<n>We examine the impact this may have on autism inclusion in society and provide recommendations for additional systemic changes towards more ethical research directions.
- Score: 3.31925780596913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human-like AI agents such as robots and chatbots are becoming increasingly popular, but they present a variety of ethical concerns. The first concern is in how we define humanness, and how our definition impacts communities historically dehumanized by scientific research. Autistic people in particular have been dehumanized by being compared to robots, making it even more important to ensure this marginalization is not reproduced by AI that may promote neuronormative social behaviors. Second, the ubiquitous use of these agents raises concerns surrounding model biases and accessibility. In our work, we investigate the experiences of the people who build and design these technologies to gain insights into their understanding and acceptance of neurodivergence, and the challenges in making their work more accessible to users with diverse needs. Even though neurodivergent individuals are often marginalized for their unique communication styles, nearly all participants overlooked the conclusions their end-users and other AI system makers may draw about communication norms from the implementation and interpretation of humanness applied in participants' work. This highlights a major gap in their broader ethical considerations, compounded by some participants' neuronormative assumptions about the behaviors and traits that distinguish "humans" from "bots" and the replication of these assumptions in their work. We examine the impact this may have on autism inclusion in society and provide recommendations for additional systemic changes towards more ethical research directions.
Related papers
- Designing for Difference: How Human Characteristics Shape Perceptions of Collaborative Robots [8.095309110037315]
Antisocial robot behavior was consistently rated as the lowest, while collaboration with aged individuals elicited more sensitive evaluations.<n>These findings suggest that both human characteristics and interaction paradigms influence the perceived acceptability of collaborative robots.
arXiv Detail & Related papers (2025-07-22T11:36:08Z) - Rude Humans and Vengeful Robots: Examining Human Perceptions of Robot Retaliatory Intentions in Professional Settings [0.0]
This paper reports the results of a 2x3 online experiment that used a unique first-person perspective video to immerse participants in a collaborative workplace setting.<n>Results are nuanced and reveal that while robots are expected to act in accordance with social expectations despite human behavior, there are benefits for robots perceived as being the bigger person in the face of human rudeness.
arXiv Detail & Related papers (2025-03-21T08:12:40Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
AI technology can support humans in scientific discovery and forming decisions, but may also disrupt democracies and target individuals.<n>The responsible use of AI and its participation in human-AI teams increasingly shows the need for AI alignment.<n>A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation [48.70176791365903]
This study explores how bias shapes the perception of AI versus human generated content.
We investigated how human raters respond to labeled and unlabeled content.
arXiv Detail & Related papers (2024-09-29T04:31:45Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AI systems need to be explainable to the humans in the loop.
We will discuss how the AI agent can use mental models to either conform to human expectations, or change those expectations through explanatory communication.
While the main focus of the book is on cooperative scenarios, we will point out how the same mental models can be used for obfuscation and deception.
arXiv Detail & Related papers (2024-05-19T22:22:21Z) - Enhancing Human Capabilities through Symbiotic Artificial Intelligence
with Shared Sensory Experiences [6.033393331015051]
We introduce a novel concept in Human-AI interaction called Symbiotic Artificial Intelligence with Shared Sensory Experiences (SAISSE)
SAISSE aims to establish a mutually beneficial relationship between AI systems and human users through shared sensory experiences.
We discuss the incorporation of memory storage units for long-term growth and development of both the AI system and its human user.
arXiv Detail & Related papers (2023-05-26T04:13:59Z) - A Rubric for Human-like Agents and NeuroAI [2.749726993052939]
Contributed research ranges widely from mimicking behaviour to testing machine learning methods.
It cannot be assumed nor expected that progress on one of these three goals will automatically translate to progress in others.
This is clarified using examples of weak and strong neuroAI and human-like agents.
arXiv Detail & Related papers (2022-12-08T16:59:40Z) - The Road to a Successful HRI: AI, Trust and ethicS-TRAITS [64.77385130665128]
The aim of this workshop is to foster the exchange of insights on past and ongoing research towards effective and long-lasting collaborations between humans and robots.
We particularly focus on AI techniques required to implement autonomous and proactive interactions.
arXiv Detail & Related papers (2022-06-07T11:12:45Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z) - Human Perception of Intrinsically Motivated Autonomy in Human-Robot
Interaction [2.485182034310304]
A challenge in using robots in human-inhabited environments is to design behavior that is engaging, yet robust to the perturbations induced by human interaction.
Our idea is to imbue the robot with intrinsic motivation (IM) so that it can handle new situations and appears as a genuine social other to humans.
This article presents a "robotologist" study design that allows comparing autonomously generated behaviors with each other.
arXiv Detail & Related papers (2020-02-14T09:49:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.