Zero-Shot Scene Understanding with Multimodal Large Language Models for Automated Vehicles
- URL: http://arxiv.org/abs/2506.12232v1
- Date: Tue, 18 Mar 2025 00:43:12 GMT
- Title: Zero-Shot Scene Understanding with Multimodal Large Language Models for Automated Vehicles
- Authors: Mohammed Elhenawy, Shadi Jaradat, Taqwa I. Alhadidi, Huthaifa I. Ashqar, Ahmed Jaber, Andry Rakotonirainy, Mohammad Abu Tami,
- Abstract summary: This paper evaluates the capability of four multimodal large language models (MLLMs) to understand scenes in a zero-shot, in-context learning setting.<n>Our experiments demonstrate that GPT-4o, the largest model, outperforms the others in scene understanding.
- Score: 5.312025021315423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scene understanding is critical for various downstream tasks in autonomous driving, including facilitating driver-agent communication and enhancing human-centered explainability of autonomous vehicle (AV) decisions. This paper evaluates the capability of four multimodal large language models (MLLMs), including relatively small models, to understand scenes in a zero-shot, in-context learning setting. Additionally, we explore whether combining these models using an ensemble approach with majority voting can enhance scene understanding performance. Our experiments demonstrate that GPT-4o, the largest model, outperforms the others in scene understanding. However, the performance gap between GPT-4o and the smaller models is relatively modest, suggesting that advanced techniques such as improved in-context learning, retrieval-augmented generation (RAG), or fine-tuning could further optimize the smaller models' performance. We also observe mixed results with the ensemble approach: while some scene attributes show improvement in performance metrics such as F1-score, others experience a decline. These findings highlight the need for more sophisticated ensemble techniques to achieve consistent gains across all scene attributes. This study underscores the potential of leveraging MLLMs for scene understanding and provides insights into optimizing their performance for autonomous driving applications.
Related papers
- MoRE: Unlocking Scalability in Reinforcement Learning for Quadruped Vision-Language-Action Models [34.138699712315]
This paper introduces a novel vision--action (VLA) model, mixture of robotic experts (MoRE) for quadruped robots.<n>MoRE integrates multiple low-rank adaptation modules as distinct experts within a dense multi-modal large language model.<n>Experiments demonstrate that MoRE outperforms all baselines across six different skills and exhibits superior generalization capabilities in out-of-distribution scenarios.
arXiv Detail & Related papers (2025-03-11T03:13:45Z) - Application of Vision-Language Model to Pedestrians Behavior and Scene Understanding in Autonomous Driving [5.456780031044544]
We propose a knowledge distillation method that transfers knowledge from large-scale vision-language foundation models to efficient vision networks.<n>We apply it to pedestrian behavior prediction and scene understanding tasks, achieving promising results in generating more diverse and comprehensive semantic attributes.
arXiv Detail & Related papers (2025-01-12T01:31:07Z) - Vision-Language Models for Autonomous Driving: CLIP-Based Dynamic Scene Understanding [5.578400344096341]
This study developed a dynamic scene retrieval system using Contrastive Language-Image Pretraining (CLIP) models.<n>The proposed system outperforms state-of-the-art in-context learning methods, including the zero-shot capabilities of GPT-4o.
arXiv Detail & Related papers (2025-01-09T20:29:31Z) - LLaVA Steering: Visual Instruction Tuning with 500x Fewer Parameters through Modality Linear Representation-Steering [30.51487692912812]
Multimodal Large Language Models (MLLMs) have significantly advanced visual tasks by integrating visual representations into large language models (LLMs)<n>We introduce Modality Linear Representation-Steering (MoReS) to achieve the goal.<n>MoReS effectively re-balances the intrinsic modalities throughout the model, where the key idea is to steer visual representations through linear transformations in the visual subspace across each model layer.
arXiv Detail & Related papers (2024-12-16T21:14:11Z) - Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5% Parameters and 90% Performance [78.48606021719206]
Mini-InternVL is a series of MLLMs with parameters ranging from 1B to 4B, which achieves 90% of the performance with only 5% of the parameters.
We develop a unified adaptation framework for Mini-InternVL, which enables our models to transfer and outperform specialized models in downstream tasks.
arXiv Detail & Related papers (2024-10-21T17:58:20Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.<n>Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.<n>We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
We look at the application of Multimodal Large Language Models (MLLMs) in autonomous driving.
Despite advances in models like GPT-4o, their performance in complex driving environments remains largely unexplored.
arXiv Detail & Related papers (2024-05-09T17:52:42Z) - Deciphering AutoML Ensembles: cattleia's Assistance in Decision-Making [0.0]
Cattleia is an application that deciphers the ensembles for regression, multiclass, and binary classification tasks.
It works with models built by three AutoML packages: auto-sklearn, AutoGluon, and FLAML.
arXiv Detail & Related papers (2024-03-19T11:56:21Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.