Graphon Quantum Filtering Systems
- URL: http://arxiv.org/abs/2506.12249v1
- Date: Fri, 13 Jun 2025 21:56:02 GMT
- Title: Graphon Quantum Filtering Systems
- Authors: Hamed Amini, Nina H. Amini, Sofiane Chalal, Gaoyue Guo,
- Abstract summary: We consider a non-exchangeable system of interacting quantum particles with mean-field type interactions, subject to continuous measurement on a class of dense graphs.<n>We derive a graphon-based quantum filtering system of equations, study its well-posedness, and establish a propagation of chaos result for multiple bosonic systems with blockwise interactions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a non-exchangeable system of interacting quantum particles with mean-field type interactions, subject to continuous measurement on a class of dense graphs. In the mean-field limit, we derive a graphon-based quantum filtering system of equations, study its well-posedness, and establish a propagation of chaos result for multiple bosonic systems with blockwise interactions. We then discuss applications to quantum graphon games and quantum state preparation.
Related papers
- Weak coupling limit for quantum systems with unbounded weakly commuting system operators [50.24983453990065]
This work is devoted to a rigorous analysis of the weak coupling limit (WCL) for the reduced dynamics of an open infinite-dimensional quantum system interacting with electromagnetic field or a reservoir formed by Fermi or Bose particles.<n>We derive in the weak coupling limit the reservoir statistics, which is determined by whose terms in the multi-point correlation functions of the reservoir are non-zero in the WCL.<n>We prove that the resulting reduced system dynamics converges to unitary dynamics with a modified Hamiltonian which can be interpreted as a Lamb shift to the original Hamiltonian.
arXiv Detail & Related papers (2025-05-13T05:32:34Z) - Effects of the Hubbard interaction on the quantum metric [0.0]
We investigate the role of interaction effects on the quantum metric.<n>We show that the repulsive Hubbard interaction monotonically suppresses the quantum metric.<n>Our conclusion holds for both flat-band and dispersive systems.
arXiv Detail & Related papers (2024-12-03T19:00:03Z) - Observed quantum particles system with graphon interaction [0.0]
We consider a system of heterogeneously interacting quantum particles subject to indirect continuous measurement.
We derive a new limiting quantum graphon system, prove the well-posedness of this system, and establish a stability result.
arXiv Detail & Related papers (2024-05-12T22:27:25Z) - The Universe as a Learning System [0.0]
We propose that under general requirements, quantum systems follow a disrupted version of the gradient descent model.
Such a learning process is possible only when we assume dissipation, i.e., that the quantum system is open.
arXiv Detail & Related papers (2024-02-22T10:11:51Z) - Stochastic approach to evolution of a quantum system interacting with a
wave packet in squeezed number state [0.0]
We determine filtering and master equations for a quantum system interacting with wave packet of light in a continuous-mode squeezed number state.
We formulate the problem of conditional evolution of a quantum system making use of model of repeated interactions and measurements.
arXiv Detail & Related papers (2023-03-21T19:42:15Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Dissipative quasi-particle picture for quadratic Markovian open quantum
systems [0.0]
Correlations between different regions of a quantum many-body system can be quantified.
For closed systems, analytical and numerical tools can accurately capture the time-evolution of subsystem entropies.
Here, we make progress by formulating a dissipative quasi-particle picture for a general class of noninteracting open quantum systems.
arXiv Detail & Related papers (2021-06-22T18:10:47Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Relaxation to Equilibrium in a Quantum Network [0.0]
We study the relaxation to equilibrium for a fully connected quantum network with CNOT gates.
We give a number of results for the equilibration in these systems, including analytic estimates.
arXiv Detail & Related papers (2020-09-28T22:15:35Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.