SheetMind: An End-to-End LLM-Powered Multi-Agent Framework for Spreadsheet Automation
- URL: http://arxiv.org/abs/2506.12339v1
- Date: Sat, 14 Jun 2025 04:22:15 GMT
- Title: SheetMind: An End-to-End LLM-Powered Multi-Agent Framework for Spreadsheet Automation
- Authors: Ruiyan Zhu, Xi Cheng, Ke Liu, Brian Zhu, Daniel Jin, Neeraj Parihar, Zhoutian Xu, Oliver Gao,
- Abstract summary: SheetMind is a framework for spreadsheet automation via natural language instructions.<n>It supports real-time interaction without requiring scripting or formula knowledge.<n>Our results highlight the effectiveness of multi agent decomposition and grammar based execution.
- Score: 6.369724723888092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present SheetMind, a modular multi-agent framework powered by large language models (LLMs) for spreadsheet automation via natural language instructions. The system comprises three specialized agents: a Manager Agent that decomposes complex user instructions into subtasks; an Action Agent that translates these into structured commands using a Backus Naur Form (BNF) grammar; and a Reflection Agent that validates alignment between generated actions and the user's original intent. Integrated into Google Sheets via a Workspace extension, SheetMind supports real-time interaction without requiring scripting or formula knowledge. Experiments on benchmark datasets demonstrate an 80 percent success rate on single step tasks and approximately 70 percent on multi step instructions, outperforming ablated and baseline variants. Our results highlight the effectiveness of multi agent decomposition and grammar based execution for bridging natural language and spreadsheet functionalities.
Related papers
- CodeAgents: A Token-Efficient Framework for Codified Multi-Agent Reasoning in LLMs [16.234259194402163]
We introduce CodeAgents, a prompting framework that codifies multi-agent reasoning and enables structured, token-efficient planning in multi-agent systems.<n>Results show consistent improvements in planning performance, with absolute gains of 3-36 percentage points over natural language prompting baselines.
arXiv Detail & Related papers (2025-07-04T02:20:19Z) - PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC [98.82146219495792]
In this paper, we propose a hierarchical agent framework named PC-Agent.<n>From the perception perspective, we devise an Active Perception Module (APM) to overcome the inadequate abilities of current MLLMs in perceiving screenshot content.<n>From the decision-making perspective, to handle complex user instructions and interdependent subtasks more effectively, we propose a hierarchical multi-agent collaboration architecture.
arXiv Detail & Related papers (2025-02-20T05:41:55Z) - TableTalk: Scaffolding Spreadsheet Development with a Language Agent [20.560984872689414]
TableTalk is a language agent that helps programmers build spreadsheets conversationally.<n>Its design reifies three design principles -- scaffolding, flexibility, and incrementality.<n>A user study with 20 programmers shows that TableTalk produces spreadsheets 2.3 times more likely to be preferred.
arXiv Detail & Related papers (2025-02-13T21:43:51Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.<n>Recent works have started exploiting large language models (LLM) to lessen such burden.<n>This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - HELPER-X: A Unified Instructable Embodied Agent to Tackle Four Interactive Vision-Language Domains with Memory-Augmented Language Models [13.963676467274109]
We extend the capabilities of HELPER by expanding its memory with a wider array of examples and prompts.
This simple expansion of HELPER into a shared memory enables the agent to work across domains executing plans from dialogue, natural language instruction, active question asking, and common room reorganization.
We evaluate the agent on four diverse interactive visual-language embodied agent: AChRED, TEA, DialFRED, and the Tidy Task.
arXiv Detail & Related papers (2024-04-29T19:12:42Z) - AgentKit: Structured LLM Reasoning with Dynamic Graphs [91.09525140733987]
We propose an intuitive LLM prompting framework (AgentKit) for multifunctional agents.
AgentKit offers a unified framework for explicitly constructing a complex "thought process" from simple natural language prompts.
arXiv Detail & Related papers (2024-04-17T15:40:45Z) - SheetAgent: Towards A Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models [45.930510174309845]
Large language model (LLM) has been recently attempted for automatic spreadsheet manipulation.<n>SheetAgent consists of three collaborative modules: Planner, Informer, and Retriever.<n>Extensive experiments demonstrate that SheetAgent delivers 20--40% pass rate improvements on multiple benchmarks over baselines.
arXiv Detail & Related papers (2024-03-06T11:48:08Z) - Executable Code Actions Elicit Better LLM Agents [76.95566120678787]
This work proposes to use Python code to consolidate Large Language Model (LLM) agents' actions into a unified action space (CodeAct)
integrated with a Python interpreter, CodeAct can execute code actions and dynamically revise prior actions or emit new actions upon new observations through multi-turn interactions.
The encouraging performance of CodeAct motivates us to build an open-source LLM agent that interacts with environments by executing interpretable code and collaborates with users using natural language.
arXiv Detail & Related papers (2024-02-01T21:38:58Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgents is an innovative framework that adaptively generates and coordinates multiple specialized agents to build an AI team according to different tasks.
Our experiments on various benchmarks demonstrate that AutoAgents generates more coherent and accurate solutions than the existing multi-agent methods.
arXiv Detail & Related papers (2023-09-29T14:46:30Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.