Perceptual-GS: Scene-adaptive Perceptual Densification for Gaussian Splatting
- URL: http://arxiv.org/abs/2506.12400v2
- Date: Fri, 20 Jun 2025 14:42:12 GMT
- Title: Perceptual-GS: Scene-adaptive Perceptual Densification for Gaussian Splatting
- Authors: Hongbi Zhou, Zhangkai Ni,
- Abstract summary: 3D Gaussian Splatting has emerged as a powerful technique for novel view synthesis.<n>We propose Perceptual-GS, a novel framework that integrates perceptual sensitivity into the 3DGS training process.<n>We show that Perceptual-GS achieves state-of-the-art performance in reconstruction quality, efficiency, and robustness.
- Score: 4.082216579462796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (3DGS) has emerged as a powerful technique for novel view synthesis. However, existing methods struggle to adaptively optimize the distribution of Gaussian primitives based on scene characteristics, making it challenging to balance reconstruction quality and efficiency. Inspired by human perception, we propose scene-adaptive perceptual densification for Gaussian Splatting (Perceptual-GS), a novel framework that integrates perceptual sensitivity into the 3DGS training process to address this challenge. We first introduce a perception-aware representation that models human visual sensitivity while constraining the number of Gaussian primitives. Building on this foundation, we develop a perceptual sensitivity-adaptive distribution to allocate finer Gaussian granularity to visually critical regions, enhancing reconstruction quality and robustness. Extensive evaluations on multiple datasets, including BungeeNeRF for large-scale scenes, demonstrate that Perceptual-GS achieves state-of-the-art performance in reconstruction quality, efficiency, and robustness. The code is publicly available at: https://github.com/eezkni/Perceptual-GS
Related papers
- UGOD: Uncertainty-Guided Differentiable Opacity and Soft Dropout for Enhanced Sparse-View 3DGS [8.78995910690481]
3D Gaussian Splatting (3DGS) has become a competitive approach for novel view synthesis (NVS)<n>We investigate how adaptive weighting of Gaussians affects rendering quality, which is characterised by learned uncertainties proposed.<n>Our method achieves 3.27% PSNR improvements on the MipNeRF 360 dataset.
arXiv Detail & Related papers (2025-08-07T01:42:22Z) - Perceive-Sample-Compress: Towards Real-Time 3D Gaussian Splatting [7.421996491601524]
We introduce a novel perceive-sample-compress framework for 3D Gaussian Splatting.<n>We show that our method significantly improves memory efficiency and high visual quality while maintaining real-time rendering speed.
arXiv Detail & Related papers (2025-08-07T01:34:38Z) - GDGS: 3D Gaussian Splatting Via Geometry-Guided Initialization And Dynamic Density Control [6.91367883100748]
Gaussian Splatting is an alternative for rendering realistic images while supporting real-time performance.<n>We propose a method to enhance 3D Gaussian Splatting (3DGS)citeKerbl2023, addressing challenges in initialization, optimization, and density control.<n>Our method demonstrates comparable or superior results to state-of-the-art methods, rendering high-fidelity images in real time.
arXiv Detail & Related papers (2025-07-01T01:29:31Z) - Metamon-GS: Enhancing Representability with Variance-Guided Densification and Light Encoding [9.703262855661064]
3D Gaussian Splatting (3DGS) has advanced novel view synthesis by utilizing Gaussians to represent scenes.<n>While significant advances have been made, it is still challenging to boost rendering performance.<n>We propose Metamon-GS, from innovative viewpoints of variance-guided densification strategy and multi-level hash grid.
arXiv Detail & Related papers (2025-04-20T02:44:39Z) - ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes [81.48624894781257]
3D Gaussian Splatting (3DGS) has made significant strides in novel view synthesis but is limited by the substantial number of Gaussian primitives required.<n>Recent methods address this issue by compressing the storage size of densified Gaussians, yet fail to preserve rendering quality and efficiency.<n>We propose ProtoGS to learn Gaussian prototypes to represent Gaussian primitives, significantly reducing the total Gaussian amount without sacrificing visual quality.
arXiv Detail & Related papers (2025-03-21T18:55:14Z) - GP-GS: Gaussian Processes for Enhanced Gaussian Splatting [15.263608848427136]
This paper proposes a novel 3D reconstruction framework, Gaussian Processes enhanced Gaussian Splatting (GP-GS)<n>GP-GS enables adaptive and uncertainty-guided densification of sparse Structure-from-Motion point clouds.<n>Experiments conducted on synthetic and real-world datasets validate the effectiveness and practicality of the proposed framework.
arXiv Detail & Related papers (2025-02-04T12:50:16Z) - PEP-GS: Perceptually-Enhanced Precise Structured 3D Gaussians for View-Adaptive Rendering [3.1006820631993515]
3D Gaussian Splatting (3D-GS) has achieved significant success in real-time, high-quality 3D scene rendering.<n>We introduce PEP-GS, a perceptually-enhanced framework that dynamically predicts Gaussian attributes, including opacity, color, and covariance.<n>We show that PEP-GS outperforms state-of-the-art methods, particularly in challenging scenarios involving view-dependent effects and fine-scale details.
arXiv Detail & Related papers (2024-11-08T17:42:02Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - MCGS: Multiview Consistency Enhancement for Sparse-View 3D Gaussian Radiance Fields [73.49548565633123]
Radiance fields represented by 3D Gaussians excel at synthesizing novel views, offering both high training efficiency and fast rendering.
Existing methods often incorporate depth priors from dense estimation networks but overlook the inherent multi-view consistency in input images.
We propose a view framework based on 3D Gaussian Splatting, named MCGS, enabling scene reconstruction from sparse input views.
arXiv Detail & Related papers (2024-10-15T08:39:05Z) - MVGS: Multi-view-regulated Gaussian Splatting for Novel View Synthesis [22.80370814838661]
Recent works in volume rendering, textite.g. NeRF and 3D Gaussian Splatting (3DGS), significantly advance the rendering quality and efficiency.
We propose a new 3DGS optimization method embodying four key novel contributions.
arXiv Detail & Related papers (2024-10-02T23:48:31Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
We propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS)
We exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms.
Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality.
arXiv Detail & Related papers (2024-04-15T04:50:39Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
We propose a few-shot view synthesis framework based on 3D Gaussian Splatting.
This framework enables real-time and photo-realistic view synthesis with as few as three training views.
FSGS achieves state-of-the-art performance in both accuracy and rendering efficiency across diverse datasets.
arXiv Detail & Related papers (2023-12-01T09:30:02Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.