CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting
- URL: http://arxiv.org/abs/2404.09458v1
- Date: Mon, 15 Apr 2024 04:50:39 GMT
- Title: CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting
- Authors: Xiangrui Liu, Xinju Wu, Pingping Zhang, Shiqi Wang, Zhu Li, Sam Kwong,
- Abstract summary: We propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS)
We exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms.
Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality.
- Score: 68.94594215660473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian splatting, renowned for its exceptional rendering quality and efficiency, has emerged as a prominent technique in 3D scene representation. However, the substantial data volume of Gaussian splatting impedes its practical utility in real-world applications. Herein, we propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS), which harnesses compact Gaussian primitives for faithful 3D scene modeling with a remarkably reduced data size. To ensure the compactness of Gaussian primitives, we devise a hybrid primitive structure that captures predictive relationships between each other. Then, we exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms. Moreover, we develop a rate-constrained optimization scheme to eliminate redundancies within such hybrid primitives, steering our CompGS towards an optimal trade-off between bitrate consumption and representation efficacy. Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality. Our code will be released on GitHub for further research.
Related papers
- Structure Consistent Gaussian Splatting with Matching Prior for Few-shot Novel View Synthesis [28.3325478008559]
We propose SCGaussian, a Structure Consistent Gaussian Splatting method using matching priors to learn 3D consistent scene structure.
We optimize the scene structure in two folds: rendering geometry and, more importantly, the position of Gaussian primitives.
Experiments on forward-facing, surrounding, and complex large scenes show the effectiveness of our approach with state-of-the-art performance and high efficiency.
arXiv Detail & Related papers (2024-11-06T03:28:06Z) - ContextGS: Compact 3D Gaussian Splatting with Anchor Level Context Model [77.71796503321632]
We introduce a context model in the anchor level for 3DGS representation, yielding an impressive size reduction of over 100 times compared to vanilla 3DGS.
Our work pioneers the context model in the anchor level for 3DGS representation, yielding an impressive size reduction of over 100 times compared to vanilla 3DGS and 15 times compared to the most recent state-of-the-art work Scaffold-GS.
arXiv Detail & Related papers (2024-05-31T09:23:39Z) - CLIP-GS: CLIP-Informed Gaussian Splatting for Real-time and View-consistent 3D Semantic Understanding [32.76277160013881]
We present CLIP-GS, which integrates semantics from Contrastive Language-Image Pre-Training (CLIP) into Gaussian Splatting.
SAC exploits the inherent unified semantics within objects to learn compact yet effective semantic representations of 3D Gaussians.
We also introduce a 3D Coherent Self-training (3DCS) strategy, resorting to the multi-view consistency originated from the 3D model.
arXiv Detail & Related papers (2024-04-22T15:01:32Z) - EfficientGS: Streamlining Gaussian Splatting for Large-Scale High-Resolution Scene Representation [29.334665494061113]
'EfficientGS' is an advanced approach that optimize 3DGS for high-resolution, large-scale scenes.
We analyze the densification process in 3DGS and identify areas of Gaussian over-proliferation.
We propose a selective strategy, limiting Gaussian increase to key redundant primitives, thereby enhancing the representational efficiency.
arXiv Detail & Related papers (2024-04-19T10:32:30Z) - HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression [55.6351304553003]
3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis.
We propose a Hash-grid Assisted Context (HAC) framework for highly compact 3DGS representation.
Our work is the pioneer to explore context-based compression for 3DGS representation, resulting in a remarkable size reduction of over $75times$ compared to vanilla 3DGS.
arXiv Detail & Related papers (2024-03-21T16:28:58Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z) - HiFi4G: High-Fidelity Human Performance Rendering via Compact Gaussian
Splatting [48.59338619051709]
HiFi4G is an explicit and compact Gaussian-based approach for high-fidelity human performance rendering from dense footage.
It achieves a substantial compression rate of approximately 25 times, with less than 2MB of storage per frame.
arXiv Detail & Related papers (2023-12-06T12:36:53Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.