Optimizing Federated Learning using Remote Embeddings for Graph Neural Networks
- URL: http://arxiv.org/abs/2506.12425v1
- Date: Sat, 14 Jun 2025 09:52:24 GMT
- Title: Optimizing Federated Learning using Remote Embeddings for Graph Neural Networks
- Authors: Pranjal Naman, Yogesh Simmhan,
- Abstract summary: Graph Neural Networks (GNNs) have experienced rapid advancements in recent years due to their ability to learn meaningful representations from graph data structures.<n> Federated Learning (FL) has emerged as a viable machine learning approach for training a shared model on decentralized data.<n>We present OpES, an optimized federated GNN training framework that uses remote neighbourhood pruning.
- Score: 3.836669717540222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have experienced rapid advancements in recent years due to their ability to learn meaningful representations from graph data structures. Federated Learning (FL) has emerged as a viable machine learning approach for training a shared model on decentralized data, addressing privacy concerns while leveraging parallelism. Existing methods that address the unique requirements of federated GNN training using remote embeddings to enhance convergence accuracy are limited by their diminished performance due to large communication costs with a shared embedding server. In this paper, we present OpES, an optimized federated GNN training framework that uses remote neighbourhood pruning, and overlaps pushing of embeddings to the server with local training to reduce the network costs and training time. The modest drop in per-round accuracy due to pre-emptive push of embeddings is out-stripped by the reduction in per-round training time for large and dense graphs like Reddit and Products, converging up to $\approx2\times$ faster than the state-of-the-art technique using an embedding server and giving up to $20\%$ better accuracy than vanilla federated GNN learning.
Related papers
- Distributed Training of Large Graph Neural Networks with Variable Communication Rates [71.7293735221656]
Training Graph Neural Networks (GNNs) on large graphs presents unique challenges due to the large memory and computing requirements.
Distributed GNN training, where the graph is partitioned across multiple machines, is a common approach to training GNNs on large graphs.
We introduce a variable compression scheme for reducing the communication volume in distributed GNN training without compromising the accuracy of the learned model.
arXiv Detail & Related papers (2024-06-25T14:57:38Z) - Federated Hyperdimensional Computing [14.844383542052169]
Federated learning (FL) enables a loose set of participating clients to collaboratively learn a global model via coordination by a central server.
Existing FL approaches rely on complex algorithms with massive models, such as deep neural networks (DNNs)
We first propose FedHDC, a federated learning framework based on hyperdimensional computing (HDC)
arXiv Detail & Related papers (2023-12-26T09:24:19Z) - Communication-Free Distributed GNN Training with Vertex Cut [63.22674903170953]
CoFree-GNN is a novel distributed GNN training framework that significantly speeds up the training process by implementing communication-free training.
We demonstrate that CoFree-GNN speeds up the GNN training process by up to 10 times over the existing state-of-the-art GNN training approaches.
arXiv Detail & Related papers (2023-08-06T21:04:58Z) - Scalable Neural Network Training over Distributed Graphs [45.151244961817454]
Realworld graph data must often be stored across many machines just because capacity constraints.
Network communication is costly and becomes main bottleneck to train GNNs.
First framework that can be used to train GNNs at all network decentralization levels.
arXiv Detail & Related papers (2023-02-25T10:42:34Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
Spiking neural networks (SNNs) are shown to be more biologically plausible and energy efficient than their predecessors.
In this paper, we put forward a generalized learning rule, termed Local Tandem Learning (LTL)
We demonstrate rapid network convergence within five training epochs on the CIFAR-10 dataset while having low computational complexity.
arXiv Detail & Related papers (2022-10-10T10:05:00Z) - Training Your Sparse Neural Network Better with Any Mask [106.134361318518]
Pruning large neural networks to create high-quality, independently trainable sparse masks is desirable.
In this paper we demonstrate an alternative opportunity: one can customize the sparse training techniques to deviate from the default dense network training protocols.
Our new sparse training recipe is generally applicable to improving training from scratch with various sparse masks.
arXiv Detail & Related papers (2022-06-26T00:37:33Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Federated Dynamic Sparse Training: Computing Less, Communicating Less,
Yet Learning Better [88.28293442298015]
Federated learning (FL) enables distribution of machine learning workloads from the cloud to resource-limited edge devices.
We develop, implement, and experimentally validate a novel FL framework termed Federated Dynamic Sparse Training (FedDST)
FedDST is a dynamic process that extracts and trains sparse sub-networks from the target full network.
arXiv Detail & Related papers (2021-12-18T02:26:38Z) - Learn Locally, Correct Globally: A Distributed Algorithm for Training
Graph Neural Networks [22.728439336309858]
We propose a communication-efficient distributed GNN training technique named $textLearn Locally, Correct Globally$ (LLCG)
LLCG trains a GNN on its local data by ignoring the dependency between nodes among different machines, then sends the locally trained model to the server for periodic model averaging.
We rigorously analyze the convergence of distributed methods with periodic model averaging for training GNNs and show that naively applying periodic model averaging but ignoring the dependency between nodes will suffer from an irreducible residual error.
arXiv Detail & Related papers (2021-11-16T03:07:01Z) - ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training [65.68511423300812]
We propose ProgFed, a progressive training framework for efficient and effective federated learning.
ProgFed inherently reduces computation and two-way communication costs while maintaining the strong performance of the final models.
Our results show that ProgFed converges at the same rate as standard training on full models.
arXiv Detail & Related papers (2021-10-11T14:45:00Z) - SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural
Networks [13.965982814292971]
Graph Neural Networks (GNNs) are the first choice methods for graph machine learning problems.
Centralizing a massive amount of real-world graph data for GNN training is prohibitive due to user-side privacy concerns.
This work proposes SpreadGNN, a novel multi-task federated training framework.
arXiv Detail & Related papers (2021-06-04T22:20:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.