Pushing the Limits of Safety: A Technical Report on the ATLAS Challenge 2025
- URL: http://arxiv.org/abs/2506.12430v2
- Date: Fri, 11 Jul 2025 02:01:54 GMT
- Title: Pushing the Limits of Safety: A Technical Report on the ATLAS Challenge 2025
- Authors: Zonghao Ying, Siyang Wu, Run Hao, Peng Ying, Shixuan Sun, Pengyu Chen, Junze Chen, Hao Du, Kaiwen Shen, Shangkun Wu, Jiwei Wei, Shiyuan He, Yang Yang, Xiaohai Xu, Ke Ma, Qianqian Xu, Qingming Huang, Shi Lin, Xun Wang, Changting Lin, Meng Han, Yilei Jiang, Siqi Lai, Yaozhi Zheng, Yifei Song, Xiangyu Yue, Zonglei Jing, Tianyuan Zhang, Zhilei Zhu, Aishan Liu, Jiakai Wang, Siyuan Liang, Xianglong Kong, Hainan Li, Junjie Mu, Haotong Qin, Yue Yu, Lei Chen, Felix Juefei-Xu, Qing Guo, Xinyun Chen, Yew Soon Ong, Xianglong Liu, Dawn Song, Alan Yuille, Philip Torr, Dacheng Tao,
- Abstract summary: This report presents findings from the Adversarial Testing & Large-model Alignment Safety Grand Challenge (ATLAS) 2025.<n>The competition involved 86 teams testing MLLM vulnerabilities via adversarial image-text attacks in two phases: white-box and black-box evaluations.<n>The challenge establishes new benchmarks for MLLM safety evaluation and lays groundwork for advancing safer AI systems.
- Score: 167.94680155673046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Large Language Models (MLLMs) have enabled transformative advancements across diverse applications but remain susceptible to safety threats, especially jailbreak attacks that induce harmful outputs. To systematically evaluate and improve their safety, we organized the Adversarial Testing & Large-model Alignment Safety Grand Challenge (ATLAS) 2025}. This technical report presents findings from the competition, which involved 86 teams testing MLLM vulnerabilities via adversarial image-text attacks in two phases: white-box and black-box evaluations. The competition results highlight ongoing challenges in securing MLLMs and provide valuable guidance for developing stronger defense mechanisms. The challenge establishes new benchmarks for MLLM safety evaluation and lays groundwork for advancing safer multimodal AI systems. The code and data for this challenge are openly available at https://github.com/NY1024/ATLAS_Challenge_2025.
Related papers
- Secure Tug-of-War (SecTOW): Iterative Defense-Attack Training with Reinforcement Learning for Multimodal Model Security [63.41350337821108]
We propose Secure Tug-of-War (SecTOW) to enhance the security of multimodal large language models (MLLMs)<n>SecTOW consists of two modules: a defender and an auxiliary attacker, both trained iteratively using reinforcement learning (GRPO)<n>We show that SecTOW significantly improves security while preserving general performance.
arXiv Detail & Related papers (2025-07-29T17:39:48Z) - Security Concerns for Large Language Models: A Survey [3.175227858236288]
Large Language Models (LLMs) have caused a revolution in natural language processing, but their capabilities also introduce new security vulnerabilities.<n>We provide a comprehensive overview of the emerging security concerns around LLMs, categorizing threats into prompt injection and jailbreaking, adversarial attacks such as input perturbations and data poisoning, and worrisome risks inherent in autonomous LLM agents.<n>We conclude by emphasizing the importance of advancing robust, multi-layered security strategies to ensure LLMs are safe and beneficial.
arXiv Detail & Related papers (2025-05-24T22:22:43Z) - SafeMLRM: Demystifying Safety in Multi-modal Large Reasoning Models [50.34706204154244]
Acquiring reasoning capabilities catastrophically degrades inherited safety alignment.<n>Certain scenarios suffer 25 times higher attack rates.<n>Despite tight reasoning-answer safety coupling, MLRMs demonstrate nascent self-correction.
arXiv Detail & Related papers (2025-04-09T06:53:23Z) - Playing the Fool: Jailbreaking LLMs and Multimodal LLMs with Out-of-Distribution Strategy [31.03584769307822]
We propose JOOD, a new Jailbreak framework via OOD-ifying inputs beyond the safety alignment.<n>Experiments across diverse jailbreak scenarios demonstrate that JOOD effectively jailbreaks recent proprietary LLMs and MLLMs.
arXiv Detail & Related papers (2025-03-26T01:25:24Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - SG-Bench: Evaluating LLM Safety Generalization Across Diverse Tasks and Prompt Types [21.683010095703832]
We develop a novel benchmark to assess the generalization of large language model (LLM) safety across various tasks and prompt types.
This benchmark integrates both generative and discriminative evaluation tasks and includes extended data to examine the impact of prompt engineering and jailbreak on LLM safety.
Our assessment reveals that most LLMs perform worse on discriminative tasks than generative ones, and are highly susceptible to prompts, indicating poor generalization in safety alignment.
arXiv Detail & Related papers (2024-10-29T11:47:01Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
We propose toolns, a comprehensive framework designed for conducting safety evaluations of MLLMs.
Our framework consists of a comprehensive harmful query dataset and an automated evaluation protocol.
Based on our framework, we conducted large-scale experiments on 15 widely-used open-source MLLMs and 6 commercial MLLMs.
arXiv Detail & Related papers (2024-10-24T17:14:40Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [8.345554966569479]
Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation.<n>Despite these advancements, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks.<n>This review analyzes the state of research on these vulnerabilities and presents available defense strategies.
arXiv Detail & Related papers (2024-10-20T00:00:56Z) - CoCA: Regaining Safety-awareness of Multimodal Large Language Models with Constitutional Calibration [90.36429361299807]
multimodal large language models (MLLMs) have demonstrated remarkable success in engaging in conversations involving visual inputs.
The integration of visual modality has introduced a unique vulnerability: the MLLM becomes susceptible to malicious visual inputs.
We introduce a technique termed CoCA, which amplifies the safety-awareness of the MLLM by calibrating its output distribution.
arXiv Detail & Related papers (2024-09-17T17:14:41Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
This paper introduces CodeAttack, a framework that transforms natural language inputs into code inputs.
Our studies reveal a new and universal safety vulnerability of these models against code input.
We find that a larger distribution gap between CodeAttack and natural language leads to weaker safety generalization.
arXiv Detail & Related papers (2024-03-12T17:55:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.