Binarization-Aware Adjuster: Bridging Continuous Optimization and Binary Inference in Edge Detection
- URL: http://arxiv.org/abs/2506.12460v1
- Date: Sat, 14 Jun 2025 11:56:44 GMT
- Title: Binarization-Aware Adjuster: Bridging Continuous Optimization and Binary Inference in Edge Detection
- Authors: Hao Shu,
- Abstract summary: Image edge detection (ED) faces a fundamental mismatch between training and inference.<n>In this paper, we propose a theoretical method to design a Binarization-Aware (BAA)<n>BAA explicitly incorporates binarization behavior into gradient-based optimization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image edge detection (ED) faces a fundamental mismatch between training and inference: models are trained using continuous-valued outputs but evaluated using binary predictions. This misalignment, caused by the non-differentiability of binarization, weakens the link between learning objectives and actual task performance. In this paper, we propose a theoretical method to design a Binarization-Aware Adjuster (BAA), which explicitly incorporates binarization behavior into gradient-based optimization. At the core of BAA is a novel loss adjustment mechanism based on a Distance Weight Function (DWF), which reweights pixel-wise contributions according to their correctness and proximity to the decision boundary. This emphasizes decision-critical regions while down-weighting less influential ones. We also introduce a self-adaptive procedure to estimate the optimal binarization threshold for BAA, further aligning training dynamics with inference behavior. Extensive experiments across various architectures and datasets demonstrate the effectiveness of our approach. Beyond ED, BAA offers a generalizable strategy for bridging the gap between continuous optimization and discrete evaluation in structured prediction tasks.
Related papers
- Contextually Entangled Gradient Mapping for Optimized LLM Comprehension [0.0]
Entually Entangled Gradient Mapping (CEGM) introduces a new approach to gradient optimization.<n>It treats gradients as dynamic carriers of contextual dependencies rather than isolated numerical entities.<n>The proposed methodology bridges critical gaps in existing optimization strategies.
arXiv Detail & Related papers (2025-01-28T11:50:35Z) - Learning Dynamic Representations via An Optimally-Weighted Maximum Mean Discrepancy Optimization Framework for Continual Learning [16.10753846850319]
Continual learning allows models to persistently acquire and retain information.<n> catastrophic forgetting can severely impair model performance.<n>We introduce a novel framework termed Optimally-Weighted Mean Discrepancy (OWMMD), which imposes penalties on representation alterations.
arXiv Detail & Related papers (2025-01-21T13:33:45Z) - Towards Robust and Interpretable EMG-based Hand Gesture Recognition using Deep Metric Meta Learning [37.21211404608413]
We propose a shift to deep metric-based meta-learning in EMG PR to supervise the creation of meaningful and interpretable representations.
We derive a robust class proximity-based confidence estimator that leads to a better rejection of incorrect decisions.
arXiv Detail & Related papers (2024-04-17T23:37:50Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
The success of automated medical image analysis depends on large-scale and expert-annotated training sets.
Unsupervised domain adaptation (UDA) has been raised as a promising approach to alleviate the burden of labeled data collection.
We propose optimization trajectory distillation, a unified approach to address the two technical challenges from a new perspective.
arXiv Detail & Related papers (2023-07-27T08:58:05Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Domain Adaptation with Adversarial Training on Penultimate Activations [82.9977759320565]
Enhancing model prediction confidence on unlabeled target data is an important objective in Unsupervised Domain Adaptation (UDA)
We show that this strategy is more efficient and better correlated with the objective of boosting prediction confidence than adversarial training on input images or intermediate features.
arXiv Detail & Related papers (2022-08-26T19:50:46Z) - Optimization-Derived Learning with Essential Convergence Analysis of
Training and Hyper-training [52.39882976848064]
We design a Generalized Krasnoselskii-Mann (GKM) scheme based on fixed-point iterations as our fundamental ODL module.
Under the GKM scheme, a Bilevel Meta Optimization (BMO) algorithmic framework is constructed to solve the optimal training and hyper-training variables together.
arXiv Detail & Related papers (2022-06-16T01:50:25Z) - Bilevel Online Deep Learning in Non-stationary Environment [4.565872584112864]
Bilevel Online Deep Learning (BODL) framework combines bilevel optimization strategy and online ensemble classifier.
When the concept drift is detected, our BODL algorithm can adaptively update the model parameters via bilevel optimization and then circumvent the large drift and encourage positive transfer.
arXiv Detail & Related papers (2022-01-25T11:05:51Z) - Data Augmentation through Expert-guided Symmetry Detection to Improve
Performance in Offline Reinforcement Learning [0.0]
offline estimation of the dynamical model of a Markov Decision Process (MDP) is a non-trivial task.
Recent works showed that an expert-guided pipeline relying on Density Estimation methods effectively detects this structure in deterministic environments.
We show that the former results lead to a performance improvement when solving the learned MDP and then applying the optimized policy in the real environment.
arXiv Detail & Related papers (2021-12-18T14:32:32Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.