Contextually Entangled Gradient Mapping for Optimized LLM Comprehension
- URL: http://arxiv.org/abs/2502.00048v1
- Date: Tue, 28 Jan 2025 11:50:35 GMT
- Title: Contextually Entangled Gradient Mapping for Optimized LLM Comprehension
- Authors: Colin Sisate, Alistair Goldfinch, Vincent Waterstone, Sebastian Kingsley, Mariana Blackthorn,
- Abstract summary: Entually Entangled Gradient Mapping (CEGM) introduces a new approach to gradient optimization.
It treats gradients as dynamic carriers of contextual dependencies rather than isolated numerical entities.
The proposed methodology bridges critical gaps in existing optimization strategies.
- Score: 0.0
- License:
- Abstract: Contextually Entangled Gradient Mapping (CEGM) introduces a new approach to gradient optimization, redefining the relationship between contextual embeddings and gradient updates to enhance semantic coherence and reasoning capabilities in neural architectures. By treating gradients as dynamic carriers of contextual dependencies rather than isolated numerical entities, the proposed methodology bridges critical gaps in existing optimization strategies. The integration of entangled gradient dynamics into a loss regularization framework demonstrated significant improvements in tasks involving long-form reasoning, contextual retention, and adaptability to unseen domains. Experimental evaluations showed that the CEGM-enhanced model consistently outperformed baseline approaches, achieving higher accuracy in token-level predictions and greater resilience to noisy inputs. Practical implementations involved modifications to training pipelines, introducing entanglement layers and dynamic coefficient adjustments that seamlessly align with existing architectures. Results further highlighted reductions in semantic drift during sequential transformations and improvements in embedding coherence across paraphrased sentences, showing the robustness and versatility of the proposed methodology. The findings demonstrate the broader implications of gradient entanglement for both theoretical advancements and practical applications in optimization strategies.
Related papers
- Structured Convergence in Large Language Model Representations via Hierarchical Latent Space Folding [0.0]
Token representations in high-dimensional latent spaces often exhibit redundancy, limiting computational efficiency and reducing structural coherence across model layers.
This paper introduces a structured transformation mechanism that enforces a multi-scale organization within learned embeddings.
Empirical evaluation demonstrates a reduction in representational variance across layers, contributing to more stable perplexity distributions and enhancing predictive confidence in text generation.
arXiv Detail & Related papers (2025-02-13T04:01:54Z) - Contextual Gradient Flow Modeling for Large Language Model Generalization in Multi-Scale Feature Spaces [0.0]
A structured gradient refinement framework was introduced to incorporate multi-scale contextual adjustments.
The hierarchical adjustment of weight updates provided an alternative to conventional backpropagation.
structured optimization strategies mitigated overfitting while preserving adaptability across heterogeneous text distributions.
arXiv Detail & Related papers (2025-02-06T22:57:40Z) - Context-Preserving Gradient Modulation for Large Language Models: A Novel Approach to Semantic Consistency in Long-Form Text Generation [0.19791587637442667]
A novel modulation gradient approach is introduced to adjust parameter updates dynamically in response to contextual relevance.
The proposed method enhances the stability of model-generated narratives without imposing significant computational overhead.
arXiv Detail & Related papers (2025-02-05T22:13:06Z) - Structural Embedding Projection for Contextual Large Language Model Inference [0.0]
Structured embedding transformations offer a promising approach for enhancing the efficiency and coherence of language model inference.
The mathematical formulation of Structural Embedding Projection (SEP) enables embedding spaces to capture structured contextual relationships.
The impact of SEP on lexical diversity suggested that embedding modifications influenced the model's vocabulary usage.
arXiv Detail & Related papers (2025-01-31T00:46:21Z) - Context-Aware Neural Gradient Mapping for Fine-Grained Instruction Processing [0.0]
This paper introduces a dynamic gradient adjustment mechanism, incorporating contextual embeddings directly into the optimization process.
The proposed framework consistently outperforms baseline models across various metrics, including accuracy, robustness to noise, and computational efficiency.
The integration of context-specific embeddings allows for a more complex understanding of language, thereby improving the model's ability to handle diverse linguistic phenomena.
arXiv Detail & Related papers (2025-01-24T21:49:24Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
Reparameterization aims to improve the generalization of deep neural networks by transforming convolutional layers into equivalent multi-branched structures during training.
We present a novel spatial gradient scaling method to redistribute learning focus among weights in convolutional networks.
arXiv Detail & Related papers (2023-03-05T17:57:33Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
Best-Response Constraint (BRC) is a general learning framework to explicitly formulate the potential dependency of the generator on the discriminator.
We show that even with different motivations and formulations, a variety of existing GANs ALL can be uniformly improved by our flexible BRC methodology.
arXiv Detail & Related papers (2022-05-20T12:42:41Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z) - Disentangling Adaptive Gradient Methods from Learning Rates [65.0397050979662]
We take a deeper look at how adaptive gradient methods interact with the learning rate schedule.
We introduce a "grafting" experiment which decouples an update's magnitude from its direction.
We present some empirical and theoretical retrospectives on the generalization of adaptive gradient methods.
arXiv Detail & Related papers (2020-02-26T21:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.