TagRouter: Learning Route to LLMs through Tags for Open-Domain Text Generation Tasks
- URL: http://arxiv.org/abs/2506.12473v1
- Date: Sat, 14 Jun 2025 12:17:47 GMT
- Title: TagRouter: Learning Route to LLMs through Tags for Open-Domain Text Generation Tasks
- Authors: Zhou Chen, Zhiqiang Wei, Yuqi Bai, Xue Xiong, Jianmin Wu,
- Abstract summary: Model routing allocates queries to the suitable model, improving system performance while reducing costs.<n>We propose Tag, a training-free model routing method designed to optimize the synergy among multiple large language models (LLM)<n> Experimental results demonstrate that Tag outperforms 13 baseline methods, increasing the accept rate of system by 6.15% and reducing costs by 17.20%, achieving optimal cost-efficiency.
- Score: 6.621120466118939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model routing allocates queries to the suitable model, improving system performance while reducing costs. However, existing routing methods face practical limitations that hinder scalability in large-scale applications and struggle to keep up with the rapid growth of the large language model (LLM) ecosystem. To tackle these challenges, we propose TagRouter, a training-free model routing method designed to optimize the synergy among multiple LLMs for open-domain text generation tasks. Experimental results demonstrate that TagRouter outperforms 13 baseline methods, increasing the accept rate of system by 6.15% and reducing costs by 17.20%, achieving optimal cost-efficiency. Our findings provides the LLM community with an efficient and scalable solution for model ensembling, offering users an evolvable "super model."
Related papers
- LOP: Learning Optimal Pruning for Efficient On-Demand MLLMs Scaling [52.1366057696919]
LOP is an efficient neural pruning framework that learns optimal pruning strategies from the target pruning constraint.<n>LOP approach trains autoregressive neural networks (NNs) to directly predict layer-wise pruning strategies adaptive to the target pruning constraint.<n> Experimental results show that LOP outperforms state-of-the-art pruning methods in various metrics while achieving up to three orders of magnitude speedup.
arXiv Detail & Related papers (2025-06-15T12:14:16Z) - RadialRouter: Structured Representation for Efficient and Robust Large Language Models Routing [31.446419903916425]
Radial is a novel framework for large language models routing.<n>It uses a lightweight Transformer-based backbone with a radial structure named RadialFormer to articulate the query-LLMs relationship.<n>It significantly outperforms existing routing methods by 9.2% and 5.8% in the Balance and Cost First scenarios.
arXiv Detail & Related papers (2025-06-04T12:16:41Z) - IRT-Router: Effective and Interpretable Multi-LLM Routing via Item Response Theory [26.39979967537193]
Large language models (LLMs) have demonstrated exceptional performance across a wide range of natural language tasks.<n>While powerful models deliver better results, they come at a high cost, whereas smaller models are more cost-effective but less capable.<n>We propose IRT-Merci, a multi-LLM routing framework that efficiently routes user queries to the most suitable LLM.
arXiv Detail & Related papers (2025-06-01T15:14:58Z) - Query Routing for Retrieval-Augmented Language Models [38.05904245087491]
Retrieval-Augmented Generation (RAG) significantly improves the performance of Large Language Models (LLMs) on knowledge-intensive tasks.<n>We observe that external documents dynamically affect LLM's ability to answer queries, while existing routing methods exhibit suboptimal performance in RAG scenarios.<n>We propose RAG, a parametric RAG-aware routing design, which leverages document embeddings and RAG capability embeddings with contrastive learning to capture knowledge representation shifts.
arXiv Detail & Related papers (2025-05-29T03:44:56Z) - OmniRouter: Budget and Performance Controllable Multi-LLM Routing [31.60019342381251]
Large language models (LLMs) deliver superior performance but require substantial computational resources and operate with relatively low efficiency.<n>We introduce Omni, a controllable routing framework for multi-LLM serving.<n>Experiments show that Omni achieves up to 6.30% improvement in response accuracy while simultaneously reducing computational costs by at least 10.15%.
arXiv Detail & Related papers (2025-02-27T22:35:31Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Universal Model Routing for Efficient LLM Inference [72.65083061619752]
We consider the problem of dynamic routing, where new, previously unobserved LLMs are available at test time.<n>We propose a new approach to this problem that relies on representing each LLM as a feature vector, derived based on predictions on a set of representative prompts.<n>We prove that these strategies are estimates of a theoretically optimal routing rule, and provide an excess risk bound to quantify their errors.
arXiv Detail & Related papers (2025-02-12T20:30:28Z) - CITER: Collaborative Inference for Efficient Large Language Model Decoding with Token-Level Routing [56.98081258047281]
Collaborative Inference with Token-lEvel Routing (CITER) is a framework that enables efficient collaboration between small and large language models.<n>We formulate router training as a policy optimization, where the router receives rewards based on both the quality of predictions and the inference costs of generation.<n>Our experiments show that CITER reduces the inference costs while preserving high-quality generation, offering a promising solution for real-time and resource-constrained applications.
arXiv Detail & Related papers (2025-02-04T03:36:44Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - RouteLLM: Learning to Route LLMs with Preference Data [41.687640419561504]
Large language models (LLMs) exhibit impressive capabilities across a wide range of tasks, yet the choice of which model to use often involves a trade-off between performance and cost.<n>We propose several efficient router models that dynamically select between a stronger and a weaker LLM during inference.<n>We develop a training framework for these routers leveraging human preference data and data augmentation techniques to enhance performance.
arXiv Detail & Related papers (2024-06-26T18:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.