Automated Heuristic Design for Unit Commitment Using Large Language Models
- URL: http://arxiv.org/abs/2506.12495v1
- Date: Sat, 14 Jun 2025 13:16:53 GMT
- Title: Automated Heuristic Design for Unit Commitment Using Large Language Models
- Authors: Junjin Lv, Chenggang Cui, Shaodi Zhang, Hui Chen, Chunyang Gong, Jiaming Liu,
- Abstract summary: Unit Commitment (UC) problem is a classic challenge in the optimal scheduling of power systems.<n>This paper proposes a Function Space Search (FunSearch) method based on large language models.<n>Results show that FunSearch performs better in terms of sampling time, evaluation time, and total operating cost of the system.
- Score: 7.319412558420025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Unit Commitment (UC) problem is a classic challenge in the optimal scheduling of power systems. Years of research and practice have shown that formulating reasonable unit commitment plans can significantly improve the economic efficiency of power systems' operations. In recent years, with the introduction of technologies such as machine learning and the Lagrangian relaxation method, the solution methods for the UC problem have become increasingly diversified, but still face challenges in terms of accuracy and robustness. This paper proposes a Function Space Search (FunSearch) method based on large language models. This method combines pre-trained large language models and evaluators to creatively generate solutions through the program search and evolution process while ensuring their rationality. In simulation experiments, a case of unit commitment with \(10\) units is used mainly. Compared to the genetic algorithm, the results show that FunSearch performs better in terms of sampling time, evaluation time, and total operating cost of the system, demonstrating its great potential as an effective tool for solving the UC problem.
Related papers
- Autoformulation of Mathematical Optimization Models Using LLMs [50.030647274271516]
This paper approaches the problem of $textitautoformulation$: the automated creation of solver-ready optimization models from natural language problem descriptions.<n>We identify three core challenges of autoformulation: $textit(1)$ the vast, problem-dependent hypothesis space, and $textit(2)$ efficient and diverse exploration of this space under uncertainty.<n>We present a novel method leveraging $textitLarge Language Models$ with $textitMonte-Carlo Tree Search$, exploiting the hierarchical nature of optimization modeling to generate and systematically explore possible formulations
arXiv Detail & Related papers (2024-11-03T20:41:38Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.<n>We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.<n> Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - ALT: An Automatic System for Long Tail Scenario Modeling [15.76033166478158]
We present an automatic system named ALT to deal with this problem.
Several efforts are taken to improve the algorithms used in our system, such as employing various automatic machine learning related techniques.
To build the system, many optimizations are performed from a systematic perspective, and essential modules are armed.
arXiv Detail & Related papers (2023-05-19T02:35:39Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse function-on-function regression problem.
We show how to extend it to the scalar-on-function framework.
We present an application to brain fMRI data from the AOMIC PIOP1 study.
arXiv Detail & Related papers (2023-03-26T19:41:17Z) - Reinforcement Learning and Tree Search Methods for the Unit Commitment
Problem [0.0]
Unit commitment problem determines operating schedules of generation units to meet demand.
Approaches which more rigorously account for uncertainty could yield large reductions in operating costs.
We develop guided tree search, a novel methodology combining model-free RL and model-based planning.
arXiv Detail & Related papers (2022-12-12T16:03:31Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - An Optimization Method-Assisted Ensemble Deep Reinforcement Learning
Algorithm to Solve Unit Commitment Problems [3.303380427144773]
Unit commitment is a fundamental problem in the day-ahead electricity market.
It is critical to solve UC problems efficiently.
Recent advances in artificial intelligence have demonstrated the capability of reinforcement learning to solve UC problems.
arXiv Detail & Related papers (2022-06-09T03:36:18Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
This paper presents a new reinforcement learning approach that is based on entropy.
In addition, we design an off-policy-based reinforcement learning technique that maximises the expected return.
We show that our model can generalise to various route problems.
arXiv Detail & Related papers (2022-05-31T09:51:48Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.