Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems
- URL: http://arxiv.org/abs/2205.15656v1
- Date: Tue, 31 May 2022 09:51:48 GMT
- Title: Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems
- Authors: Nasrin Sultana, Jeffrey Chan, Tabinda Sarwar, A. K. Qin
- Abstract summary: This paper presents a new reinforcement learning approach that is based on entropy.
In addition, we design an off-policy-based reinforcement learning technique that maximises the expected return.
We show that our model can generalise to various route problems.
- Score: 2.6782615615913348
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Model-free deep-reinforcement-based learning algorithms have been applied to
a range of
COPs~\cite{bello2016neural}~\cite{kool2018attention}~\cite{nazari2018reinforcement}.
However, these approaches suffer from two key challenges when applied to
combinatorial problems: insufficient exploration and the requirement of many
training examples of the search space to achieve reasonable performance.
Combinatorial optimisation can be complex, characterised by search spaces with
many optimas and large spaces to search and learn. Therefore, a new method is
needed to find good solutions that are more efficient by being more sample
efficient. This paper presents a new reinforcement learning approach that is
based on entropy. In addition, we design an off-policy-based reinforcement
learning technique that maximises the expected return and improves the sample
efficiency to achieve faster learning during training time. We systematically
evaluate our approach on a range of route optimisation tasks typically used to
evaluate learning-based optimisation, such as the such as the Travelling
Salesman problems (TSP), Capacitated Vehicle Routing Problem (CVRP). In this
paper, we show that our model can generalise to various route problems, such as
the split-delivery VRP (SDVRP), and compare the performance of our method with
that of current state-of-the-art approaches. The Empirical results show that
the proposed method can improve on state-of-the-art methods in terms of
solution quality and computation time and generalise to problems of different
sizes.
Related papers
- Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Faster Stochastic Variance Reduction Methods for Compositional MiniMax
Optimization [50.10952609321302]
compositional minimax optimization is a pivotal challenge across various machine learning domains.
Current methods of compositional minimax optimization are plagued by sub-optimal complexities or heavy reliance on sizable batch sizes.
This paper introduces a novel method, called Nested STOchastic Recursive Momentum (NSTORM), which can achieve the optimal sample complexity of $O(kappa3 /epsilon3 )$.
arXiv Detail & Related papers (2023-08-18T14:57:21Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Reinforcement Learning Methods for Wordle: A POMDP/Adaptive Control
Approach [0.3093890460224435]
We address the solution of the popular Wordle puzzle, using new reinforcement learning methods.
For the Wordle puzzle, they yield on-line solution strategies that are very close to optimal at relatively modest computational cost.
arXiv Detail & Related papers (2022-11-15T03:46:41Z) - Online Control of Adaptive Large Neighborhood Search using Deep Reinforcement Learning [4.374837991804085]
We introduce a Deep Reinforcement Learning based approach called DR-ALNS that selects operators, adjusts parameters, and controls the acceptance criterion throughout the search.
We evaluate the proposed method on a problem with orienteering weights and time windows, as presented in an IJCAI competition.
The results show that our approach outperforms vanilla ALNS, ALNS tuned with Bayesian optimization, and two state-of-the-art DRL approaches.
arXiv Detail & Related papers (2022-11-01T21:33:46Z) - Deep Reinforcement Learning for Exact Combinatorial Optimization:
Learning to Branch [13.024115985194932]
We propose a new approach for solving the data labeling and inference issues in optimization based on the use of the reinforcement learning (RL) paradigm.
We use imitation learning to bootstrap an RL agent and then use Proximal Policy (PPO) to further explore global optimal actions.
arXiv Detail & Related papers (2022-06-14T16:35:58Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
Vehicle routing problem (VRP) is a typical discrete optimization problem.
Many studies consider learning-based optimization algorithms to solve VRP.
This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.
arXiv Detail & Related papers (2021-07-15T02:13:03Z) - Learning Vehicle Routing Problems using Policy Optimisation [4.093722933440819]
State-of-the-art approaches learn a policy using reinforcement learning, and the learnt policy acts as a pseudo solver.
These approaches have demonstrated good performance in some cases, but given the large search space typical of routing problem, they can converge too quickly to poor policy.
We propose entropy regularised reinforcement learning (ERRL) that supports exploration by providing more policies.
arXiv Detail & Related papers (2020-12-24T14:18:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.