論文の概要: Towards Seamless Borders: A Method for Mitigating Inconsistencies in Image Inpainting and Outpainting
- arxiv url: http://arxiv.org/abs/2506.12530v1
- Date: Sat, 14 Jun 2025 15:02:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:46.413383
- Title: Towards Seamless Borders: A Method for Mitigating Inconsistencies in Image Inpainting and Outpainting
- Title(参考訳): シームレス境界に向けて:画像の塗布・塗布における不整合を緩和する手法
- Authors: Xingzhong Hou, Jie Wu, Boxiao Liu, Yi Zhang, Guanglu Song, Yunpeng Liu, Yu Liu, Haihang You,
- Abstract要約: 拡散型塗布モデルにおける不一致問題に対処する2つの新しい手法を提案する。
まず,色不均衡を補正する修正変分オートエンコーダを導入する。
次に,拡散過程において生成した画像と既存の画像のブレンディングを改善するための2段階のトレーニング戦略を提案する。
- 参考スコア(独自算出の注目度): 22.46566055053259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image inpainting is the task of reconstructing missing or damaged parts of an image in a way that seamlessly blends with the surrounding content. With the advent of advanced generative models, especially diffusion models and generative adversarial networks, inpainting has achieved remarkable improvements in visual quality and coherence. However, achieving seamless continuity remains a significant challenge. In this work, we propose two novel methods to address discrepancy issues in diffusion-based inpainting models. First, we introduce a modified Variational Autoencoder that corrects color imbalances, ensuring that the final inpainted results are free of color mismatches. Second, we propose a two-step training strategy that improves the blending of generated and existing image content during the diffusion process. Through extensive experiments, we demonstrate that our methods effectively reduce discontinuity and produce high-quality inpainting results that are coherent and visually appealing.
- Abstract(参考訳): 画像の塗装は、画像の欠落した部分や損傷した部分を、周囲のコンテンツとシームレスに混ざり合うように再構築する作業である。
高度な生成モデル、特に拡散モデルや生成的敵ネットワークの出現により、インパインティングは視覚的品質とコヒーレンスにおいて顕著な改善を遂げた。
しかし、シームレスな連続性を達成することは大きな課題である。
本研究では,拡散型塗装モデルにおける相違問題に対処する2つの新しい手法を提案する。
まず,色不均衡を補正する修正変分オートエンコーダを導入する。
第2に,拡散過程において生成した画像と既存の画像のブレンディングを改善する2段階のトレーニング戦略を提案する。
広汎な実験により,本手法は不連続性を効果的に低減し,コヒーレントで視覚的に魅力的である高品質な塗装結果が得られることを示した。
関連論文リスト
- ESDiff: Encoding Strategy-inspired Diffusion Model with Few-shot Learning for Color Image Inpainting [5.961957277931777]
画像インペイント(英: Image inpainting)とは、画像の欠落した領域や損傷領域を復元するために用いられる技法である。
本稿では,カラー画像のインペイントのための数ショット学習を用いた符号化戦略インスピレーション拡散モデルを提案する。
実験結果から,本手法は測定値において現在の手法を超えていることが示唆された。
論文 参考訳(メタデータ) (2025-04-24T13:08:36Z) - MVIP-NeRF: Multi-view 3D Inpainting on NeRF Scenes via Diffusion Prior [65.05773512126089]
露光RGBと深度2Dの塗布監督を基盤としたNeRF塗布法は,その基礎となる2D塗布能力によって本質的に制限されている。
我々は,NeRF塗装における拡散先行の可能性を生かし,外観面と幾何学面の両方に対処するMVIP-NeRFを提案する。
実験の結果,従来のNeRF塗装法よりも外観や形状の回復性が良好であった。
論文 参考訳(メタデータ) (2024-05-05T09:04:42Z) - Fill in the ____ (a Diffusion-based Image Inpainting Pipeline) [0.0]
塗り絵は、画像を撮り、失った、または故意に隠された部分を生成する過程である。
現代の塗装技術は、有能な完成物を生成する際、顕著な能力を示している。
既存のモデルにおける重要なギャップに対処し、何が正確に生成されたかをプロンプトし制御する能力に焦点を当てる。
論文 参考訳(メタデータ) (2024-03-24T05:26:55Z) - BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed
Dual-Branch Diffusion [61.90969199199739]
BrushNetは、ピクセルレベルのマスク付きイメージ機能を事前訓練されたDMに埋め込むために設計された、新しいプラグアンドプレイデュアルブランチモデルである。
BrushNetは、画像品質、マスク領域保存、テキストコヒーレンスを含む7つの主要な指標で、既存のモデルよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-03-11T17:59:31Z) - Towards Enhanced Image Inpainting: Mitigating Unwanted Object Insertion and Preserving Color Consistency [78.0488707697235]
ASUKA(Aigned Stable Inpainting with UnKnown Areas)と呼ばれるポストプロセッシングアプローチは、インパインティングモデルを改善する。
Masked Auto-Encoder (MAE) は、オブジェクト幻覚を緩和する。
ローカルタスクとしてラテント・ツー・イメージ・デコーディングを扱う特殊なVAEデコーダ。
論文 参考訳(メタデータ) (2023-12-08T05:08:06Z) - Diverse Inpainting and Editing with GAN Inversion [4.234367850767171]
近年の逆転法では、実画像はStyleGANの潜伏空間に逆転可能であることが示されている。
本稿では,より困難な課題に取り組み,消去された画像をGANの潜伏空間に逆転させ,リアルな塗り絵や編集を行う。
論文 参考訳(メタデータ) (2023-07-27T17:41:36Z) - GRIG: Few-Shot Generative Residual Image Inpainting [27.252855062283825]
そこで本研究では,高画質な残像塗装法を新たに提案する。
中心となる考え方は、特徴抽出のために畳み込みニューラルネットワーク(CNN)を組み込んだ反復的残留推論手法を提案することである。
また, 忠実なテクスチャと詳細な外観を創出するための, フォージェリーパッチ対逆訓練戦略を提案する。
論文 参考訳(メタデータ) (2023-04-24T12:19:06Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
SinDiffusionは1つの自然な画像からパッチの内部分布を捉えるためにデノナイズ拡散モデルを利用する。
SinDiffusionは、2つのコア設計に基づいている。まず、SinDiffusionは、段階的にスケールが成長する複数のモデルではなく、1つのスケールで1つのモデルで訓練されている。
第2に,拡散ネットワークのパッチレベルの受容領域は,画像のパッチ統計を捉える上で重要かつ効果的であることを示す。
論文 参考訳(メタデータ) (2022-11-22T18:00:03Z) - In&Out : Diverse Image Outpainting via GAN Inversion [89.84841983778672]
image outpaintingは、利用可能なコンテンツを超えて、入力画像の意味的に一貫した拡張を求める。
本研究では、生成的対向ネットワークの反転の観点から問題を定式化する。
私達の発電機はイメージの彼らの共同潜入コードそして個々の位置で調節されるマイクロ パッチをレンダリングします。
論文 参考訳(メタデータ) (2021-04-01T17:59:10Z) - Very Long Natural Scenery Image Prediction by Outpainting [96.8509015981031]
アウトペイントには2つの課題があるため、あまり注意を払わない。
第一の課題は、生成された画像と元の入力の間の空間的および内容的整合性を維持する方法である。
第2の課題は、生成した結果の高品質を維持する方法です。
論文 参考訳(メタデータ) (2019-12-29T16:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。