DejaVid: Encoder-Agnostic Learned Temporal Matching for Video Classification
- URL: http://arxiv.org/abs/2506.12585v1
- Date: Sat, 14 Jun 2025 17:39:03 GMT
- Title: DejaVid: Encoder-Agnostic Learned Temporal Matching for Video Classification
- Authors: Darryl Ho, Samuel Madden,
- Abstract summary: DejaVid is an encoder-agnostic method that enhances model performance without the need for retraining or altering the architecture.<n>We introduce a new neural network architecture inspired by traditional time series alignment algorithms for this learning task.<n>Our evaluation demonstrates that DejaVid substantially improves the performance of a state-of-the-art large encoder.
- Score: 4.973664680272982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, large transformer-based video encoder models have greatly advanced state-of-the-art performance on video classification tasks. However, these large models typically process videos by averaging embedding outputs from multiple clips over time to produce fixed-length representations. This approach fails to account for a variety of time-related features, such as variable video durations, chronological order of events, and temporal variance in feature significance. While methods for temporal modeling do exist, they often require significant architectural changes and expensive retraining, making them impractical for off-the-shelf, fine-tuned large encoders. To overcome these limitations, we propose DejaVid, an encoder-agnostic method that enhances model performance without the need for retraining or altering the architecture. Our framework converts a video into a variable-length temporal sequence of embeddings, which we call a multivariate time series (MTS). An MTS naturally preserves temporal order and accommodates variable video durations. We then learn per-timestep, per-feature weights over the encoded MTS frames, allowing us to account for variations in feature importance over time. We introduce a new neural network architecture inspired by traditional time series alignment algorithms for this learning task. Our evaluation demonstrates that DejaVid substantially improves the performance of a state-of-the-art large encoder, achieving leading Top-1 accuracy of 77.2% on Something-Something V2, 89.1% on Kinetics-400, and 88.6% on HMDB51, while adding fewer than 1.8% additional learnable parameters and requiring less than 3 hours of training time. Our code is available at https://github.com/darrylho/DejaVid.
Related papers
- Exploiting Temporal State Space Sharing for Video Semantic Segmentation [53.8810901249897]
Video semantic segmentation (VSS) plays a vital role in understanding the temporal evolution of scenes.<n>Traditional methods often segment videos frame-by-frame or in a short temporal window, leading to limited temporal context, redundant computations, and heavy memory requirements.<n>We introduce a Temporal Video State Space Sharing architecture to leverage Mamba state space models for temporal feature sharing.<n>Our model features a selective gating mechanism that efficiently propagates relevant information across video frames, eliminating the need for a memory-heavy feature pool.
arXiv Detail & Related papers (2025-03-26T01:47:42Z) - Token-Efficient Long Video Understanding for Multimodal LLMs [101.70681093383365]
STORM is a novel architecture incorporating a dedicated temporal encoder between the image encoder and the Video-LLMs.<n>We show that STORM achieves state-of-the-art results across various long video understanding benchmarks.
arXiv Detail & Related papers (2025-03-06T06:17:38Z) - Representing Long Volumetric Video with Temporal Gaussian Hierarchy [80.51373034419379]
This paper aims to address the challenge of reconstructing long volumetric videos from multi-view RGB videos.<n>We propose a novel 4D representation, named Temporal Gaussian Hierarchy, to compactly model long volumetric videos.<n>This work is the first approach capable of efficiently handling minutes of volumetric video data while maintaining state-of-the-art rendering quality.
arXiv Detail & Related papers (2024-12-12T18:59:34Z) - SparseTem: Boosting the Efficiency of CNN-Based Video Encoders by Exploiting Temporal Continuity [15.872209884833977]
We propose a memory-efficient scheduling method to eliminate memory overhead and an online adjustment mechanism to minimize accuracy degradation.
SparseTem achieves speedup of 1.79x for EfficientDet and 4.72x for CRNN, with minimal accuracy drop and no additional memory overhead.
arXiv Detail & Related papers (2024-10-28T07:13:25Z) - VideoLLaMB: Long-context Video Understanding with Recurrent Memory Bridges [42.555895949250704]
VideoLLaMB is a novel framework that utilizes temporal memory tokens within bridge layers to allow for the encoding of entire video sequences.
SceneTilling algorithm segments videos into independent semantic units to preserve semantic integrity.
In terms of efficiency, VideoLLaMB, trained on 16 frames, supports up to 320 frames on a single Nvidia A100 GPU.
arXiv Detail & Related papers (2024-09-02T08:52:58Z) - No Time to Waste: Squeeze Time into Channel for Mobile Video Understanding [38.60950616529459]
We propose to squeeze the time axis of a video sequence into the channel dimension and present a lightweight video recognition network, term as textitSqueezeTime, for mobile video understanding.
The proposed SqueezeTime is much lightweight and fast with high accuracies for mobile video understanding.
arXiv Detail & Related papers (2024-05-14T06:32:40Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders Beyond 16 Frames [57.758863967770594]
We build on the common paradigm of transferring large-scale, image--text models to video via shallow temporal fusion.<n>We expose two limitations to the approach: (1) decreased spatial capabilities, likely due to poor video--language alignment in standard video datasets, and (2) higher memory consumption, bottlenecking the number of frames that can be processed.
arXiv Detail & Related papers (2023-12-12T16:10:19Z) - VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking [57.552798046137646]
Video masked autoencoder (VideoMAE) is a scalable and general self-supervised pre-trainer for building video foundation models.
We successfully train a video ViT model with a billion parameters, which achieves a new state-of-the-art performance.
arXiv Detail & Related papers (2023-03-29T14:28:41Z) - Learning Trajectory-Aware Transformer for Video Super-Resolution [50.49396123016185]
Video super-resolution aims to restore a sequence of high-resolution (HR) frames from their low-resolution (LR) counterparts.
Existing approaches usually align and aggregate video frames from limited adjacent frames.
We propose a novel Transformer for Video Super-Resolution (TTVSR)
arXiv Detail & Related papers (2022-04-08T03:37:39Z) - PGT: A Progressive Method for Training Models on Long Videos [45.935259079953255]
Main-stream method is to split a raw video into clips, leading to incomplete temporal information flow.
Inspired by natural language processing techniques dealing with long sentences, we propose to treat videos as serial fragments satisfying Markov property.
We empirically demonstrate that it yields significant performance improvements on different models and datasets.
arXiv Detail & Related papers (2021-03-21T06:15:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.